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CHAPTER ONE 

INTRODUCTION 

1.1 Overvie\v 

Electromagnetic sensors come 1n different versions: capacitive, inductive, 

microwave, optics, etc. Eddy current probes (inductive sensors) have been used for 

decades in nondestructive evaluation (NDE) applications to detect flaws in conducting 

objects. Inductive probes are discussed by Rosegreen and Cooley (Bahr, and Rosegreen, 

1987; Bahr, 1982; Bahr, and Cooley, 1983; Bahr, 1985). Capacitive sensors have been 

widely used fot many decades also, but these applications have been based on extremely 

simple physical concepts; there has been no attempt to exploit the sophisticated sensing 

capabilities of generalized electric field probes. In NDE, there is a requirement to know 

not only how a probe behaves analytically under different probe geometry 

transformations, but also how a probe interacts with objects of different shapes and 

material properties. 

Eddy current probes can not be used to detect a flaw in dielectric objects, because 

they are not sensitive to changes in dielectric constants. Therefore, a special technique 

needs to be used in this case. A number of researchers have extended the usage of the 

capacitive probes into sophisticated dielctric inspection applications (Auld et al., 1986; 

Gimple and Auld , 1989; and Shull et al., 1990). The advantages of these sensors have 

over their eddy-current counterpart, the inductive sensor, is their ability to interrogate 
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dielectric materials. In addition to inspection of insulators, capacitive probes can also 

detect surface features of conductive materials. 

Capacitive probes can be used to investigate the properties and structures of both 

' 
conductors and dielectrics. For conductors, only surface features can be extracted, 

charges which accumulate at the surface blind the capacitive probe to the interior 

structures. Dielectric materials do not present this problem. Both surface and interior 

features can be examined. The conventional eddy current probes can analyze sub-surface 

features of samples, provided the features lie within a skin depth of the surface. 

Capacitive probes are much less sensitive in this situation. 

Studies. of fla\V detection probes have shown that desirable detection properties 

can be designed into the capacitive probes by using spatial frequency analysis to 

determine the optimum probe geometry for the test at hand (Auld et al., 1986). Spatial 

resolution in this case is determined by the geometry of the probe, rather than the 

electromagnetic wavelength. 

The capacitive sensor is a versatile and promising device for nondestructive 

evaluation of dielectric materials. It responds to the complex dielectric constant of the 

interrogated material. The device is sensitive to both surface as well as subsurface 

defects in dielectric materials and to surface features in conductive materials. 

1.2 Probe capabilities 

The electromagnetic basis of a sensor allows for multi-parameter sensing. A 

probe measures electromagnetic coupling with the sample to determine the distance of the 

probe from an object. It measures changes in the voltage versus current characteristics at 
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the probe terminal to detect the existence, and the sizes, of flaws. By using differential 

probes, simple surface features such as edges can be detected. Finally, the changes in 

capacitances and resistances in known geometry samples can be used to extract material 

~ 

properties such as dielectric constant and conductivity. 

Capacitive sensors have been used before by many researchers in the following 

applications: first, distance ranging, which refers to the ability to detect distance from an 

object without having to make any physical contact (Gimple, 1987; Gimple and Auld, 

1989); second, edge detection capability, which means the ability to locate interfaces of 

an object and its environment (boundaries), or the ability to find and characterize 

discontinuities 1h an object's geometry or material property (Gimple, 1987; Gimple and 

Auld, 1989; Shull et al., 1990; Shull et al., 1988 ); third, response optimization which 

refers to the ability to change the sensor response to a given stimulus in order to enhance 

the detection of the desired property or feature (Gimple, 1987; Gimple and Auld, 1989); 

fourth, pattern matching, which is the ability to recognize a certain feature, or features, by 

configuring the probe to behave as a template. When the pattern is detected (or the 

template matches the physical feature) the total response is at an extreme (Gimple, 1987; 

Gimple and Auld, 1989); fifth, monitoring porosity and thickness of a dielectric material, 

which refers to the ability of the probe to give different responses corresponding to 

different thickness of the dielectric material or to different density of the material (Shull 

et al., 1990; Shull et al., 1988). The strategy for separating proximity and material effects 

in a capacitive probe for dielectric objects can be achieved by operating the probe in a 
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variable geometry mode; sixth, detection of surface and subsurface flaws and features in 

insulators (Shull et al., 1990). 

1.3 Probe configurations 

A common capacitive probe for NDE is essentially a parallel plate capacitor that 

has been unfolded so that the two plates lie in the same plane against a common substrate. 

Because of this, the electric field lines, rather than being uniform parallel and are now 

semielliptical (non-uniform). The probe is operated by feeding the voltage to one of its 

electrodes (source)r and measuring the current from the second element (receiver). 

Material samples are placed in the lower half space. Changes in the measured current 

reflect changes in the sample or probe configuration. If we place a grounded metal 

sample close to the electrodes, the current around the receiver electrode to gro~nd will be 

shunted, which lowers the output signal. On the other hand, dielectrics will enhance the 

output. They increase the capacitive coupling between the sensing electrodes without 

shunting a large amount of current to ground. The basic probe element is shown in 

Figure 1-1 a, with a variation shown in Figure 1-1 b. The second probe is similar to the 

basic element, except that the source, in this ~ase consists of two adjacent electrode 

fingers excited simultaneously, and the receiver consists of the another two adjacent 

electrode fingers whose current outputs are added together. This probe element can be 

used for deeper field penetration and higher sensitivity at a given 

distance from the probe. It has less lateral resolution because the sample interacts with 

the probe over a larger distance. This behavior creates more uncertainty in determining 

the location of the features under examination. 
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All of the above probes are sensitive to both the vertical distance between the 

probe and the sample and horizontal displacements. Separating the two effects from each 

other cannot be done using a single source-receiver probe. This leads to the third type of 

probe element. Figure l-2a displays an electrode configuration that makes use of 

multiple receivers and a single source electrode. This type of probe together with a 

differential electronic circuit can be used to eliminate signals from common-mode 

outputs. Changes that are identically effected on both sides of the differential pair 

similarly produce zero voltage. Only changes that asymmetrically disturb parts of the 

probe fields will result in non-zero outputs. The differential configuration is essentially 

two elementary probes connected in tandem with opposite polarity. 

Figure 1-2b displays a slightly more complicated probe than the previous one. It 

is nothing more than a differential probe that combines two (multi) electrodes together at 



www.manaraa.com

6 

Source 
Source 

+ 

1 1 
(a) (b) 

+ 

Source 

1 
(c) 

Figure 1-2 Differential probes 

both the source and the receiver. It con1bines the two probe types in Figure 1-2a and 1-lb. 

Because of that, one can expect an increase in the sensitivity to distance and a decrease in 

the resolution in the lateral direction. 

The last important variant of the simple differential probe is shown in Figure 1-2c. 

It is just two differential probes connected in tandem with opposite polarity. This probe 

can be used to look simultaneously at features (edges) that are separated in space (slot) 

(Gimple, 1987; Gimple, and Auld, 1989). When the spatial separation of the sample edge 
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matches the spatial separation of the source electrodes, the output signal will be the sum 

of the two signals at the edges. 

The probe sensing ability can be varied by changing the number and geometry of 

the electrodes, and the size of the sensor. Sensitivity to liftoff, a common problem with 

electromagnetic sensors, can be reduced by operating the probe in a differential geometry 

(Shull et al., 1990). In this n1ode the probe can detect variations that are small in size 

compared with the probe's sensing area. Although this probe can reduce the effect of the 

liftoff problem, it reduces the probe sensitivity to a slowly varying parameter. Because of 

this, we need to connect the probe in the absolute mode (Figures 1-la, 1-lb) to use it as a 

proximity sensor or to detect changes in material properties, such as varying thickness, 

porosity, or dielectric constant. The difficulty with operating in this mode is the extreme 

sensitivity to liftoff. 

1.4 Applications 

Capacitive sensors are used in many applications: robotic sensing, nondestructive 

evaluation (NDE), etc. The most important applications of using the capacitive sensor in 

the robotics area are in locating the presence anq. the nature of an object (Gimple, 1987). 

Gimple mentioned that one advantage of using capacitive sensors is that they are not 

easily fooled by apparently large imperfections caused by surface effects. 

In NDE, the capacitive sensor can provide information about the surface and sub­

surface regions of a dielectric material. It also provides information about surface 

features of conductors. The most important applications of this ability are in monitoring 

the curing process of epoxy, or the doping a semiconductor. Also, using these sensors, 
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we can detect surface or sub-surface flaws in a dielectric material. This sensor can be 

used to detect variations in the thickness or the density of dielectrics. We use these 

characteristics of the sensor to monitor the integrity of ceramic coatings used in turbines. 

1.5 Objectives 

The main objective of this research is to study various applications of capacitive 

sensors for dielectric measurements. We also developed a numerical model for 

application of the sensor to thickness measurement. The finite difference method was 

used· to develop the numerical model. The effect of various factors in the measurement 

setups and environment on the response of the sensor were studied. Also, various factors 

have been studied in designing the probes. These factors affect the output response of the 

sensor. A technique was developed to determine the thickness of a dielectric -material. 

We used the sensors to detect different types of flaws (surface or subsurface) in a 

dielectric material. A technique based on the convolution idea was developed to 

determine the width and the length of slots. Finally, some image restoration techniques 

were used to restore image obtained from the sensor. Restored images were used to 

improve estimates of the width and the length o~ slots. 

Most of the research done on capacitive sensors by previous investigators was 

oriented towards robotic sensing or general NDE applications. In some of this work 

numerical codes were developed to model the response of this sensor in the presence of 

flaws using the finite element method, but no models were developed for thickness 

measurements. Part of the research in NDE was focused on the response of capacitive 
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sensors in the presence of flaws, but the response was not explained nor were images 

studied to determine the \Vidth or length of cracks or slots. 

1.6 Organization 

Chapter two discusses a numerical model of the sensor for thickness 

measurements. It also describes a circuit model for the sensor and the effect of unused 

fingers in measurements. Chapter three summarizes the most important experimental 

results we obtained in different areas: studying the effect of different factors on the design 

of the sensor and in the experimental setups, using the sensor to measure the thickness of 

dielectrics, using the sensor to detect the presence of a flaw and gauging the dimensions 
0 •• 

of this flaw. Chapter three also compares experimental results with theory and explains 

these results. Chapter four discusses some important quantitative results. Fin~ly Chapter 

five discusses the important conclusions of this work and directions for future 

developments. 
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CHAPTER TWO 

NUMERICAL ANALYSIS 

2.1 Introduction 

The most general application of the capacitor sensor uses a parallel plate capacitor 

that has been opened up so that the two plates lie in the same plane, against a common 

substrate. Finding a closed form solution for this case, in which all values of the problem 

parameters can be substituted, is not an easy task. The analytic solution provides the 

guiding equations, but the numerical solution can provide real quantities. Therefore it is 

important to develop a numerical model of the sensor that represents the probe's behavior 

efficiently and correctly because of the number of variables available to tailor the 

capacitive probe to meet a required applications. This model and the results based on 

numerical methods have many important uses: they can minimize the spent time in testing 

a prototype probe, can be used for quantitative comparisons with experimental results, and 

the numerical and the experimental results can be combined to form a hybrid method of 

analysis that could be used to determine certain properties of the required material. 

In our applications, the capacitor sensor has been used in two major areas. First, it 

is used to determine some important properties of a dielectric material such as thickness, 

dielectric constant, and porosity. Second, it is used to detect the presence of a flaw or step 

change in the dielectric material. The analytic solution in chapter two can provide a good 

prediction on the behavior of the sensor in the presence of a flaw, but this solution can not 

predict the behavior of the sensor with an inhomogeneous dielectric material. Therefore, 
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a numerical solution developed in this research is used to demonstrate the behavior of the 

capacitor sensor under changing dielectric thickness and geometry. 

The particular system that has been examined in this case is a single finger 
I 

electrode as shown in Figure 3.1, in which one finger is connected to a source and the 

second finger is connected to a receiver. Also a system of three fingers has been studied 

in two cases. The first case was connecting the first finger as a source and the third finger 

as a receiver, while keeping the middle finger floating. The second case was connecting 

the first and third finger as before, but fixing the voltage on the middle finger to a certain 

potential which has been calculated from the numerical solution. This system has been 

examined to check the effect of the left finger placed between the active ones. 

2.2 Circuit model 

The fundamental operations of the probe sample system can be described by 

looking at the circuit model of the basic source-receiver-sample system. This model is 

displayed in Figure 2-2. There are mainly four capacitor components representing the 

capacitive coupling in the system (Gimple, 1987). These are the capacitive coupling 

between the source and the receiver, CsR. between the source and the bottom metal plate 

of the sample, C50, between the receiver and the bottom metal plate, CRo, between the 

bottom metal plate and the ground, CDG· The variability of Coa is not due to the change in 

the dielectric thickness, but it is due to the change in the grounding environment, i.e. the 

connecting wire with the ground, the connectivity between the grounding wire and the 

bottom metal plate, etc. The variability in the other coupling capacitances (CsR, Cs0 , CRo) 

and is due to the change in the thickness of the dielectric material. The coupling 
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Figure 2-1. Bas~c numerical field geometry for probe-sample system 
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Figure 2-2. Circuit model for a source-receiver-sample system 
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capacitance between the two electrodes and the ground have been neglected, because they 

do not have any effect on the output signal assuming that the voltage source and the 

current meter for the impedance analyzer are near the ideal (Gimple," 1987). 

The numerical solution to be discussed later will examine the behavior of the 

probe-sample system by determining the quality of the effect of each of the capacitors in 

the circuit model. Then the total response will be calculated as a combination of all of 

them. 

2.3 Finite - difference method 

The finite difference method is a simple numerical technique used in solving 

partial differential equations. The main equation used for solving the fields for the 

electrodes is the Laplacian. The main step to find the solution by finite-differe!lce method 

is based on finding field values at discrete points spaced in an ordered way over the whole 

field region of the function describing the field. The one partial differential equation of 

the field (Laplace's equation) has been replaced by many simple finite difference 

equations which take the form of linear equations connecting the potential at each point 

with the potential at its neighboring points (Bin~s and Lawrenson, 1973; Sadiku, 1989 ). 

The field value at each grid point can be obtained by solving a set of simple simultaneous 

algebraic equations for potential values. 

Of the many techniques available, the square or rectangular mesh or network was 

chosen. In this case, the five star iterative network was used, Figure 2-3 shows the five 

star geometry. From the general form for an asymmetrical star, the difference equation for 
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the potential at the center of certain special star like the square or rectangle was calculated 

(Binns and Lawrenson, 1973). 

The grid used in this calculation has its node points separated by 2 mils in the 

horizontal direction and by a range of separation from 0.5 mils to 4 mils in the vertical 

direction. The grid size \vas determined by repeating the experiment different times and 

studying the change in the capacitance value in each case. When the difference was less 

than a certain amount, \Ve stopped decreasing the grid size. The small vertical separation 

of the nodes is used for all nodes on the sample and up to a point 10 mils above the 

electrodes. The vertical node spacing doubles for every 20 rows of node points from there 

on. This variabfe vertical spacing was used to decrease the computation time and improve 

the accuracy of the calculated values. The accuarcy improved by using small spacing in 

the area of a large variation and sn1all steps when the variation is slight. 

The finite difference method was used to solve Laplace's equation 

a2<1> a2<1> a2<D 
V 2<I> = 0 = --+ -.,- + -.,-. This 3D equation can be changed to a 2D equation by 

d2x a-y a-z 

assuming that we have a constant <I> in the z direction. Laplace's equation is valid in static 

fields. Because we used a frequency with large wavelength campared with the diemnsions 

of the whole syten1, we can approximate the tield in our case as a static field. The general 

finite difference form of asymmetrical star used to solve Laplace's equation (Binns, and 

Lawrenson, 1973) can be written as 

<I>t <l>2 <l>J <l>4 1 1 
+ + + =(-+-) <I>o 

p(p+r) q(q +s) r(p+r) s(q +s) pr qs 
(2.1) 
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where p, q, r, and s are the distance from points 1, 2, 3, and 4 to the origin 0, respectively. 

and <I>o, <1>1, <1>2, <1>3, <1>4, are the corresponding potentials at the points 0, 1, 2, 3, and 4 

respectively. For the points that are centered on a uniform square mesh, the distances 

becomes p = q = r = s, therefore the difference equation reduces to 

1 
<I>o = - ( <1>1 + <1>2 + <1>3 + <1>4) 

4 

r 

p 

(2.2) 

Figure 2-3. The star geometry used for finite difference calculations 

For the points that are equally spaced in a rectangular mesh, the difference equation for 

node 0 is obtained by putting p = r, q = s. The potential at 0 can be calculated using 

q 2 + 1 ¢2 <1>4 
<I>o = 0.5( -.,- )( <1>1 + - 2 + Cl>J + -, ) 

q- q q-
(2.3) 

For the points that are centered at non-uniform stars for which p = r, and q * s, the 

potential at 0 equals: 
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A~~ 
' p 
B=~ 

p 

16. 

(2.4) 

For points at the boundary of the dielectric sample and the air due to the liftoff distance 

that the probe had when we did the measurements as shown in Figure 3.1, the following 

implementation was used (assuming a uniform legged star pattern) (Binns and Lawrenson, 

1973; Ferziger, 1981; Gimple, 1987). 

where 

X --~ d an 
1 + Er 

Y=-2-
1 + Er 

(2.5) 

The sample used for the calculation consists of polyester plastic sheets placed on a 

metal plate. The average thickness of each plastic sheet is 4.01 mils. The electrode 

fingers are 66.67 mils in width, 66.67 mils in spacing, and 355.2 mils in length. The 

relative dielectric constant of the plastic sheets is 2.3. The voltage source is set to 1 volt 

for normalization purposes. The n1etal plate under the plastic sheets is set to 0 volts. The 

plastic sheets and the metal plate in our numerical model are assumed to be infinite in 

width, and the metal plate is assumed to be a perfect conductor. These two assumptions 

approximate the actual system, but not model it exactly. Figure 2-1 displays the basic 

geometry field with the electrodes and sample shown. 
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The sample was scanned from the northwest corner to the southeast comer using 

the Gauss-Siedel method (Binn and Lawrenson, 1973). In this method, the potential at 0 

is calculated using the values for the north and west points that had just been previously 

' 
calculated in the present scan, meanwhile we used the old values from the previous scan 

for the south and east points. This kind of method requires less memory and speeds up 

convergence (Binns and Lawren~on, 1973). The new calculated value is substituted the 

for old value without violating the boundary conditions. The first boundary condition 

assumed in our case was that the potentials at the points which are far away from the 

probe or at infinity, equal zero. The second boundary condition was that the potential of 

the two fingers ·and the bottom metal plate were fixed to a constant value at every point on 

them (conductors are equipotential surfaces). The degree of accuracy of the values is 

measured by the residuals at the nodes. The residual Ro at node 0 is the amount by which 

the calculated potential at this node fails to get a constant number which is equal to the 

actual voltage at this node, and is given by 

Ro=Vn-Vo (2.6) 

where V n = new potential calculated by one of the above equations 

V0 == old potential (from the previous scan) 

The potential at node 0 is modified by the new calculated value from one of the above 

equations (2.2, 2.3, 2.4, 2.5) so as to relax (or reduce) the residuals at that node. The 

relaxation process is repeated at each node and the whole grid is iterated several times 

until the residuals at any point in our system is reduced to zero or to a sufficiently small 

value. 
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The accuracy of the n1ethod depends on the fineness of the grid and the amount of 

time spent in refining the potentials. The computer time can be reduced and the accuracy 

and the convergence rate can be increased by using the method of successive over 

relaxation (Binns, and Lawrenson, 1973), by making reasonable guesses of initial values, 

by taking advantage of symn1etry if possible, and by using more complex finite difference 

methods. 

In solving the finite-difference equation, the technique is to continually modify 

values of potential until all the equations are satisfied to a sufficient degree of accuracy. 

To increase the rate of convergence of the solution while keeping the equation as simple 

as possible, the· successive over-relaxation (SOR) version of the Gauss-Siedel algorithm 

has been used (Binns and Lawrenson, 1973). SOR is the most flexible and useful of the 

rapidly convergent iterative n1ethods. In this case, the new value of potential has been 

determined as the sum of the old value and a. times the difference between the calculated 

value and the old value. That is, 

<I>o = a.(V n - V o) + V o 

= a.Vn + (1-a.) Yo 

(2.7) 

where a. is a convergence or relaxation factor between 1 and 2 that determines the degree 

of over-relaxation. 

When a>> 2 the process becomes unstable. For convenience a value for a. of 1.5 was 

chosen to insure stability. There are a number of other rapidly convergent methods which 

have been more recently used (Binns, and Lawrenson, 1973), but the SOR method is the 

best because of its simplicity, flexibility, and relatively rapid rate of convergence. 
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The boundary elements have initial conditions of zero potential at all points except 

at the points corresponding to the capacitor plates and the bottom metal plate. The 

boundary values are chosen as a compromise between computing time, storage 

requirements, and accuracy of the solution. The number of iterations K, required for the 

reduction of the largest error at any node to a fraction £ of some previous value, is in 

general a function of the boundary shape and conditions, the number of nodes, the 

particular type of difference equation, and the convergence factor. Convergence is 

determined ~or the base cases by examining the behavior of three test points. For every 

iteration, we calculated the residual at each point. When these residuals were reduced to 

about 0.1 per cent of the mean value of the potentials, the algorithm is terminated. We 

reduced the complexity of the program by n1aking runs with small incremental changes at 

a fixed iteration count. As an example, we modeled the parallel plate capacitor with plate 

area 0.1 m2 and plate spacing 0.01 m by a grid of size 0.1 mm, and with fixed potentials of 

1 volt at the upper plate and 0 volt at the lower plate. We found that by doubling the 

number of grids, the change in the calculated capacitance did not exceed 0.1 % of the 

value calculated before (without doubling), but it more than doubled the execution time. 

We also found that 200 iterations is a good number in this case. Increasing this number by 

50 iterations did not change the calculated capacitance by more than 0.07 %. According 

to our experiments, we found that more iterations were required if the number of grids 

increased. 



www.manaraa.com

20 

2.4 Partial Capacitance Calculation 

The measured admittance is directly proportional to the total capacitance between the 

plates under measurements. The admittance value varies as the total capacitance is changed. To 

determine this capacitance, the partial capacitance has been used (Boast, 1956). For a system of 

three conductors as shown in Figure 2.1, with the metal plate as a reference potential node (0), 

the two charges upon the source and the receiver conductors can be written as: 

QR = BRRCl>oR + BRSct>RS 

Qs = BSScfXJS + BSRct>SR 

(2.8a) 

(2.8b) 

where the coefficients BRR , Bss were called by Maxwell the coefficients of capacitance, and BRs, 

BsR the coefficients of induction (Boast, 1956). ct>oR, ct>os: are the potentials between the receiver 

and the reference (bottom metal plate), and between the source and the reference respectively. 

QR ,Qs: are the charges on the receiver and the source respectively. 

To determine the value of these coefficients, the above equation can modified as 

QR = BRRCl>oRI<I>Rs = o (2.9a) 

QR = BRSct>RS!cl>oR = o (2.9b) 

Qs = Bss<roslct>sR = o (2.9c) 

QR = BSRct>sRict>os = o (2.9d) 

Then from the above equation one can calculate the value of the coefficients, if the values of the 

charges and the potentials are known. If Q5/ct>Rs is called the partial capacitance between 
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source and the receiver, then Qs/ci>Rs is called the partial capacitance between the source 

and the receiver conductors, and BRs is the negative of this partial capacitance. 

Consequently, Maxwell's Coefficients of induction BRs and BsR are identical. The 

interpretation of Maxwell's coefficients of capacitance and induction gives the partial 

capacitance, then 

Cos= Bss + BsR 

CoR= BRs + BRR 

·CRs:: -BRs 

CsR = CRs 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

where Cos, CoR' is the partial capacitance between the reference· and the source and 

between the reference and the receiver, respectively. While CRs, or CsR is the partial 

capacitance between the source and the receiver. By using the partial capacitance method, 

all of the capacitances in the systen1 can be determined. To calculate the partial 

capacitance in our case between the source and the receiver conductors CRs, or CsR with 

plate spacing of 0.0 I m, we ran our program with zero potential for the receiver conductor 

and the bottom metal plate, and 1 volt for the source conductor. The calculated QR 

(330.54 pC) corresponds to the coefficient BRs which equals in this case the partial 

capacitance CRs, and the value of Qs (83.32 ~LC) corresponds to the coefficient BRR· To 

find the total capacitance of the source conductor, we need to add the two coefficients: BRs 

and BRR· We can repeat the same procedure for the receiver conductor by fixing the 

source conductor at zero volts and the receiver conductor at 1 volt. We get the same partial 

capacitances. 
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2.5 Field and capacitance calculations 

The total capacitance of any conductor (receiver or source) is determined by 

calculating the total flux entering (or leaving) the conductor per unit potential difference 

between it and all neighboring conducting parts (Binns and Lawrenson, 1973). For the 

relaxation solution, the potential of the conductor is conveniently set at 1 volt, whilst the 

remaining conductors are set at zero. 

The total flux <I>e is calculated by integrating the normal component of flux 

density, determined from the potential gradient, a round a suitable contour enclosing the 

conductor. 

fl.V-:- ~v~ 
E= -VV = -(-t+-J) 

~X ~y 

Q = J pdv = <l>e 

(2.11) 

(2.12) 

(2.13) 

where Q is the total charge enclosed by the surface through which the flux is flowing. The 

contour was chosen to avoid regions with large gradients. A rectangular contour was 

chosen in the calculation for sin1plicity. Figure 2-4 shows a simple example of the path 

used to calculate the capacitance for a parallel plate capacitor. If <I>i is the potential at the 

node just inside the contour, and <1> 0 is the potential at the adjacent node just outside it, the 

normal potential gradient on the contour is (<l>i - <1>0)/h (assuming the same grid size in 

both vertical and horizontal directions). Thus, if £.-£0 is the permitivity of the insulating 
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1--+---+--+--t--.--l---1--+--+--+--4---'"-'-• cl>i . 
- - - !··'-T -t---t-+---loi h 

-+-+-4~--~~+-+-4-~~~-<l>o~--~-4 

Figure 2-4. Calculating the capacitance of the parallel plate capacitor 

material and N is the number of meshes cutting the contour (in the example shown in 

Figure 2-4 equals N 26 points: 20 points from the horizontal crossing on both sides of the 

contour and six· points from the vertical crossing on both sides of the contour) , the total 

flux is 

N 
<l>e = £reo I, ( <l>i - <l>o) (2.14) 

n=l 

(assuming the gradient is constant over a mesh length h), and the capacitance is 

C= Q I ~ V = <l>e I ~ V (2.15) 

where ~ V= difference in the potential between the two conductors (source and receiver). 

2.6 Comparison \vith the ·analytical solutions 

As a check of the nun1erical solution code, a parallel plate capacitor was modeled 

and tested. The analytical solution of the parallel plate capacitor is determined by 

C=EAid, where A is the area of the plate, d is the separation between the two plates. This 

formula for the parallel plate capacitor neglects the fringing effect of the electric field. 

Using the numerical solution code, the parallel plate capacitor has been tested for different 
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plate areas (0.025 to 0.125 m
2
) and for different spacings between the plates (0.01 to 0.05 

m). The size of grid used in this program was fixed at 0.1 mm, while the number of 

iterations varied, according to the total number of grids required to model each case, from 

200 (in the case of 0.01m spacing) to 600 (in the case of 0.05m spacing). In all cases the 

upper parallel plate was fixed at 1 volt and the lower parallel plate was fixed at 0 volts. 

We ran the program on the DEC station 5000. The execution time varied from 6 hours 

(at 200 iterations) to 18 hours (at 600 iterations). Table 2-1 summarizes these results. 

From Table 2-1, it is noticed that the calculated capacitance using the numerical 

solution is always a little bit higher (in the maximum case equals 3.62%) than capacitance 

using the analytical formula. This increase is due to the fact that the analytical· formula 

neglects the fringing effect, but the numerical code calculates the capacitance using the 

total charge without neglecting the fringing effect. Using the results tabulated in this 

table, the effect of increasing the area of the two plates and the spacing between the two 

plate has been studied. Figures 2-5, 2-6, 2-7, and 2-8 study this relation. 

We see in Figure 2-5 that the analytical solution is a straight line because the 

relationship between the area and the capacitance using the analytical formal is completely 

linear, but the numerical capacitances deviate a little bit from the straight line. This is 

because the numerical solution takes care of the fringing effect and does not assume 

linearity. We noticed also from Table 2-1 that the difference, between the capacitance 

calculated using the analytical formula and the one calculated using a numerical solution 

as the area increases is due to some numerical errors. From Figure 2-7 we notice that the 
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Table 2-1. Comparison between analytical and numerical solution of the parallel 
Qlate ca~acitor 

Plate area Plate spacing Analytical Ca Numerical C6 Percentage of c 

(m2) (rn) ( EF) ( EF) error 
0.1 X 1 0.01 327.44 330.54 0.95 
0.1 X l 0.02 163.72 165.41 1.03 
0.1 X 1 0.03 109.15 111.1 1.79 
0.1 X 1 0.04 81.9 84.58 3.27 
0.1 X 1 0.05 65.49 67.86 3.62 

0.125 X 1 0.01 409.5 412.25 0.67 
0.075 X 1 0.01 245.7 246.67 0.39 
0.05 X 1 0.01 163.8 164.76 0.59 
0.25 X 1 0.01 81.9 82.49 0.72 

;a Calculated capacitance using the analytical formula C=eA/d 
b Calculated capcitance using the numerical progrum with I volt at the upper plate and 0 volt st the lower 
plate, the grid size used was 0.1 mm. The number of iterations varied according to the number of grids used 
to represent each case. 
c Percentage of error=[( !Analytical C- Numerical Cl )/Analytical C] * 100%. 
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Figure 2-5. Effect of the area of the hvo plates 
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Figure 2-8. Analytical capacitance vs. calculated capacitance using the finite 
difference method at different plate spacing 

relationship between the analytical capacitacnes and the calculated capacitances from 

numerical solution at different areas is close to a straight line of slope 45°. This indicates 

that the numerical values approximate the analytical ones very closely. From Figures 2-6 

and 2-8, we see that the calculated capacitance from the analytical solution is close to the 

1/d curve expected from the analytical relation. We noticed also from the table that the 

difference between the analytical values and the numerical ones increases as the spacing 

increases. This is consistent with the neglect of fringing in the analytical case. Also from 

Figure 2-8, we can get the same relationship we observed from Figure 2-7 between the 

analytical values and the numerical values at different plate spacing. This kind of 

behavior can be improved, and this difference can be decreased to the minimum, if the 

number of iterations increases to improve the accuracy. This solution increases the 

execution time very much. For example, if we increase the number of iterations by 50 , 
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iterations in the case of 0.1 m
2 

plute area and 0.05 spacing between the plates, the 

execution time may increase by more than three hours. 

2.7 Effect of the unused conductor 

One of the most important steps in n1aking measurements with a capacitive probe 

is repeating the measurements for different spacings bet\veen the source finger and 

the receiver finger. This can be achieved by using the first finger as a source, then leaving 

one finger unconnected, then connecting the third finger as a receiver. This is illustrated in 

Figure 2-9. The spacing between the source and receiver in this case is the sum of the 

spacing between the left finger and the central one plus the spacing between the right 

. ' 

finger and the central one plus the width of the central finger. All fingers have constant 

potential, i.e. they are equipotential surfaces. 

The effect of this central conductor on the value of the capacitance of the probe 

was calculated numerically with and without fixing the potential on this conductor. The 

source code of the ntunerical program was modified to take into consideration this 

situation. Firstly, we ran the program as usual, so this means that the voltage of the central 

finger was not fixed. It was found that the val~1e of the capacitance without fixing the 

potential on this conductor equals 419.4 pF. Secondly, we ran the program with a fixed 

potential on the central conductor by forcing the potential of all grids related to this 

conductor to be equal to a calculated value from the program at the first grid point on this 

conductor. The value of the capacitance when the potential of this conductor was fixed 

was 418.7 pF. The difference between the two cases is 0.7 pF. Because of the small 

difference in the two cases we can conclude that there is little effect on the value of the 
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capacitance of the probe if the potential on the central conductor is not fixed to a certain 

potential. All of the codes used in thi s chapte r are summarized in Appendix A. 

sourc~ receiver 

Wiulh 

To1al spacing= spJcing I +spacing2+wid lh 

Figure 2-9. Changing the spacing between fingers 
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CHAPTER THREE 

EXPERIMENTAL SETUPS AND RESULTS 

3.1 Introduction 

In our research we used the capacitive probe in various applications each of which 

required a different experimental setup. Experimental setups in all applications have four 

major elements. The first is the probe itself. The probe is the active element in the 

system. After being excited by a source signal, it converts the source signal into an output 

signal that is a function of the position, physical surface features, and the material 

properties of the sample. 

The second element is the electronics circuits and the data acquisition system. In 
.. 

some applications, we found that the signal was very noisy and weak. In this case, we 

amplified the output signal directly before doing any kind of processing. We built an 

electronic circuit to convert the signal to a usable output. Then following this electronic 

circuit, we used an HP 4194A Impedance/Gain-Phase Analyzer to measure the output 

signal. This instrument provided a source signal for the probe. In some applications, a 

computer was used to capture the data and control both the impedance analyzer and the 

motor motion. The computer kept synchronization bet\veen the motor motion and the 

measuring system, and recorded both the position of the probe and the corresponding 

measured value. 

The third system component is the text fixture. This is a mechanical device that 

physically holds the sample and the probe together in a proper orientation and location. It 
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consists of a test bed and a motor. The motor controlled the motion of the probe. The 

fourth experemental component is the sample itself. 

Overall, the system \Vas built for many purposes: Studying the effect of changing 

' 

parameters in the probe or the surrounding setups, determining the thickness of the 

dielectric material, detecting the change in the thickness of the sample, and detecting 

different types of surface or subsurface features. For this reason, we built our probe with a 

large degree of freedom to allow the probe to move over the sample in both the x and y 

directions at a controllable height z. In addition to that, we found that examining pure 

surface or subsurface features requires determining the distance from the probe to the 

sample. 

In the next section, we discuss the general setup for each of the above four 

elements. At the beginning of each result section, we mention the specific setups for each 

element. In section 3.3 we discuss the effect of certain parameters in the designing of the 

probe or in building the n1easurement system. In section 3.4, we discuss the use of the 

probe to determine the thickness of a dielectric material. In section 3.5, we discuss the use 

of the probe to detect the change in the thickness of the dielectic material. In the last 

section, we discuss the most popular application of the probe to detect different types of 

flaws or features. 

3.2 General setup 

3.2.1 The Probe 

In all of our experiments, we used a capacitor probe in two modes: an absolute 

mode and a differential mode. We built two different types of probes: the interdigitized 

...... ,, .·'". 
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(ID) probes and the square directional (SD) probes. The ID probes consist basically of 

electrode strips in parallel separated uniformly from each other on a dielectric substrate. 

At the beginning of our research we built prototype probes of the ID type and used them to 
. 

study the effect of different factors on the output signal and to test the capabilities of the 

capacitive probe. We Then used printed circuit board (PCB) technology to build new 

probes from the two types. With PCB technology we can build probes with smaller sizes 

and smaller spacing between the fingers. These new probes are more flexible when 

connecting and moving. 

Figure 3-1 a shows the basic ID probe. In contrast, the SD probes shown in Figure 

3- l b consist basi'caiiy of a square conductor surrounded by four electrodes. The SD probe 

was used to detect different types of fl aws. It is assumed that this probe can detect any 

flaw in any direction due to the presence of the two pairs of opposite electrodes. The use 

of this type of probe have not been previously reported in this literature. The inside square 

was driven by the source s ignal, while the opposite pair of the electrodes was connected as 

a differential receiver. 

+ 

Source 

............ ~-+ 

Source 

(a) (b) 

Figure 3-1. (a) Basic interdigitized probe (b) Basic square directional probe 
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The probes were labled in a manner that gtves the user or reader complete 

dimension information about the probe used. The interdigitized probes were designed the 

probe with an equal space between the fingers, with the width of the finger and the space 

! 

between the finger in the permanent probes, the same. Table 3-1 summarizes the names 

we used for the ID probes. The center column contains a descriptive name with 

dimensions as specified in the footnote. The SD probes were built with equal lengths of 

the _·square sides of the source and the receiver electrodes. Table 3-2 summarizes the 

naming criteria for the SD probes. The center column also contains descriptive 

dimensions as specified in the footnote. For the prototype probes, we used only the ID 

type of the same 'general geometry as the one shown in Figure 3-1. We had two types that 

differed in length. The longer one was of length 8.88 mm, while the shorter one was of 

length 6.96 rnm. The widths of the fingers in both cases \Vas 1.67 mm. 

Table 3-1. Naming the interdigitized probes 
Description Complete Namea 
8mil, 15 fingers ID-8-8-200-15 
20mil, 15 fingers ID-20-20-500-15 
40mil, 15 fingers ID-40-40-1000-15 

Common Name 
ID-8 
ID-20 
ID-40 

a 10-finger width-space between fingers-finger length-number of tingers (dimensions in mils) 

Table 3-2. Naming the square directional probes 
Description Complete Namea 
100 mils long fingers S D-1 0-10-100 
200 mils long fingers SD-8-12-200 
a SO-finger width-space between tingers-finger length 

Common Name 
SD-100 
SD-200 
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Each type of probes was built \Vith two spacings: the single space was 1.67 mm, 

and the double space was 3.41 mm. When we used more than one finger as a source or as 

a receiver, we made the source connections from one side of the probe and the receiver 

connections from the other side as shown in Figure 3-1. This was done to minimize any 

possible cross-talk noise. 

To change the spacing between the source and the receiver in the PCB 

interdigitized probes, we changed the connection of the receiver finger by leaving number 

of fingers near the source unconnected, as explained in Chapter two. The reason for this 

in the PCB probes is that \Ve can not remove the unused fingers. 

3.2.2 Electronics and data acquisition system 

The basic source-receiver system can be considered as an admittance-measuring 

system where the source is a voltage source, and we measured the current to the ground 

from the receiver side, as shown in Figure 3-2. In some measurements, we used the probe 

in a differential mode as shown in Figure 1-2. This means that the system becomes more 

complicated, but it is still an admittance measuring system. 

The output signal from the probe was very weak and was strongly affected by 

parasitic capacitance in the system. Also, we noticed that the measured signal strongly 

fluctuated if the position of the wires was changed with respect to each other. This 

behavior affects the stability of the results and the flexibility of the system. To reduce the 

effect of the parasitic capacitance of the wires, we replaced individual wires with coaxial 

cables. The inner conductor of the coaxial cable was connected to the source or the 

receiver with the analyzer, while the outer conductors for all coaxial cables were 
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Source Receiver 

Probes 

Figure 3-2. Basic source-receiver system 

connected with each other and with the ground point in the analyzer. These coaxial cables 

provided sufficient shielding to reduce the effects of parasitic capcitances. 

To make the output signal from the probe stronger, \Ve boosted it with a current .. 
amplifier (often called a transistance amplifier) as shown in Figure 3-3. This circuit is a 

current to voltage converter where the output is related to the input voltage as .. 

Yout =leap R or I = Vout 

R 

where leap is the current passes through the capacitive probe. 

We define 

then 

A Yin 
Z:=­

lcap 

Vin 
or leap=-

Zc 

Yout Yin ' 
--=-

R Z: 

Z= Yin R 
Your 

or Y c = _1 = V out _!.._ = G 
Zc Vin R R 

Vout 5 
where G =-, then Yc = 10- * G for R=lOO kQ 

Yin 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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R=lOO kQ 

Source Receiver 

leap 
~~----a Vout 

j_ 
Figure 3-3. Current or transistance amplifier 

The complete circuit with the an1plifier and the probe were tested with the 

impedance analyzer. The source electrode was connected to the output channel of the 

analyzer and to the reference channel while the output of the amplifier was connected with 

the test channel of the analyzer. The reference channel was set at 50 Q and 20 dB. The 

test channel was set at 1 MQ, and 0 dB. The output channel was set for a single 

measurement, and the oscillator level set at 15 dBm. The starting frequency was I kHz 

and the stop frequency was 2 MHz. The impedance analyzer was used in Gain-Phase 

measurement. We measured the characteristic function, or the gain-frequency plot as 

shown in Figure 3-4. In the area from 0-1200 kHz the amplifier itself has a constant gain, 

then this gain decreases as the frequency Increases, but due to the presence of the 

capacitive probe the overall transfer function changes to the one shown in Figure 3-4. For 

this reason, we noticed that the amplifier was more stable if the operating frequency for 
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Figure 3-4: Gain-frequency characteristic function for the current amplifier 

the system is less than 1.0 MHz. To work in the stable region, we made· all of our 

measurements at 300 or 500 kHz. For the differential mode case, we built a circuit like the 

one in Figure 3-3 for each receiver finger. Due to the small size of the probe, we could 

not build a differential amplifier on the same bread board. For this reason, \Ve individually 

measured the voltages on the probes and then used the computer to calculate the 

differential signal between the two electrodes. ·A point to note is that, for a balanced 

signal (equal electrode voltages), the output of the two amplifiers is not the same due to 

the small common-mode element and the unbalancing in the amplifier itself. 

The overall schematic for the electronic system is shown in Figure 3-5. The voltage 

source used was the HP 4194A Impedance/Gain-Phase Analyzer operating with a sine 

wave output mode. The operating frequency was chosen to be high in order that the 
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Voltage Source Amplifier Imp. Analyzer 
... 

HP4194 A Probe ... Circuits 'HP4194A 

.. 

Drive signal Control signal 

' ,,. 
Motor Computer ... 

Position information 

Figure 3-5. Overall schematic for the electronic system 

impedance of the source-receiver pair be low enough to produce adequate output current. 

This frequency· was limited at the high end by the bandwidth restrictions of the 

transistance amplifier as mentioned above. 

The output signal from the receiver was fed again to the impedance analyzer 

HP4194A. The HP analyzer has two modes of measurements: impedance mode and gain-

phase mode. When we used the capacitive probe in the absolute mode, we used the 

analyzer in the impedance mode. On the other hand, when we used the probe in the 

differential mode, we used the analyzer in the gain-phase mode, except in some cases 

which we will discuss later. An external power supply was used to power the electronics 

board. The supply voltage used was a Dual-Tracking DC power supply, Model TPS-4000. 

It supplied dual de voltage output of plus/minus 15 volts. 

The computer was directly connected to the impedance analyzer. The computer 

controlled all of the setups required for the impedance analyzer. The computer also 

controlled the position of the test bed and the motor motion. Using a package software 
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called MOVER, we controlled the whole system and captured the data from the analyzer 

together with the position information of this data. Then this software stored the data into 

a file. 

~ 

3.2.3 Test fixture 

The text fixture includes the test bed used to position the sample on it, the 

positioner which is the device used to fix the position of the probe and to determine the 

vertical distance between the sample and the probe, the motor which is used to move the 

test bed and the sample at the same time. \Ve used the DAEDAL M23 Motor/Drives set 

to work as a motor in our system. This device has a built-in test bed so we can use the bed 

to fix the position of the sample. It is a complete microstepping motor drive. The drive 

operates from a step and directional control input. The set is supplied with an indexer 

interface input which consists of a 25-pin female "D" type connector. This connector is 

where pulse and direction inputs are supplied. Then, the device is connected with a PC 

computer to control the motion of the motor and the position of the bed. The whole set 

also is supplied by three micrometers working in three directions. These micrometers 

control the motion or the position of the bed in the three directions: x, y, z. The x and y 

micrometers are used for slight fixing of the position of the bed with respect to the head 

which is used to hold the probe. The z micrometer is used to control the vertical distance 

between the head and the bed, i.e., control the liftoff distance. 

In some of our point measurements, we used a separate positioner to hold the 

probe and the sample. This positioner also has three micrometers to control the distances 

in the three directions. 

. . ~ . ~~--)~· 
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3.2.4 The sample 

We used two different samples: The plastic sheet sample and a plastic sample 

machined with slots of varying widths and depths. The plastic sheet sample consisted of a 

number of plastic sheets, with a thickness of 4.01 mil for each sheet. This sample was 

used with prototype probes to study the effect of different factors on the output signal from 

the probe. This sample also was used in measuring the thickness of the dielectric material. 

The second sample was a thick plastic sample with a thickness of 0.697 inch. We made 

two types of slots in this sample. The first one was a wide slot of width 0.25 inch, and 

the second one was a narrow slot of width 0.105 inch. For each width we made five types 

of slots of different depths: surface breaking (i.e., the depth was 0.697 inch), 0.662 inch, 

0.627 inch, 0.522 inch, 0.347 inch slots. Each slot was used as a surface slot or a buried 

slot except the surface breaking one. Figure 3-6 shows two views of this sample. 

3.3 Defining the best measurement configurations 

To determine the best measurement configurations, we studied the effect of 

various factors on the measurements. From the probe side, we studied the effect of the 

number of fingers used as a source or as a re~eiver, the spacing between neighboring 

fingers, and the dimensions of each finger. From the system side, \Ve studied the effect of 

the shielding, the operating frequency of the system, the liftoff problem, and the grounding 

of the bottom metal plate under the dielectric sample. According to the effects of all of 

these factors, we selected the best configurations. In this part of our study, we used the 

plastic sheet sample of ten sheets. Using the impedance analyzer in the impedance mode, 

we selected the admittance measurement type. 
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· Figure 3-6. The top and side vie\vs of the plastic sample 

We set it at short integration time and 32 averaging. We used two frequencies (50 kHz 

and 1 OOk.Hz) in all of our measurements. Also we used the prototype probes of both 

widths: the wide one of width of 8.88 mm, and the narrow one of width 6.96 mm. In 

some of our measurements we used both kinds of probes with different spacing between 

fingers (single spacing is 1.67 mm and double ~pacing is 3.41 mm), and with different 

number of fingers (single finger or double finger for the receiver or for the source). 

However, in all of our measurements in this case, we used the probes in the absolute 

mode. We studied all of these factors in two main types of connection of the fingers as a 

source or receiver. Connection number one was performed by connecting one side of the 

probe with the high potential connector of the impedance analyzer and the second side 

connected to the low potential connector of the analyzer while keeping the bottom metal 
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plate either floating or connected to the general ground of the analyzer. This connection is 

illustrated in Figure 3-7a. Connection number two was done by connecting both sides of 

the probe with same point (high potential) of the analyzer while connecting the bottom 

' metal plate to the other connector of the analyzer. Figure 3-7b illustrates this connection. 

In the case of using more than one finger as a source or a receiver, we used two different 

ways to connect these fingers. These t\vo ways are illustrated in Figure 3-8. 

To study the effect of each factor, we repeated the measurements with different 

combinations of the other factors. For example to study the effect of the operating 

frequency, we took measurements at two frequencies with a different number of fingers, 

different spacings between fingers, different areas of the fingers, and different grounding 

environments for the bottom metal plate. \Ve did the same thing for the other factors 

except for the shielding and the lift off factors. 

Source Receiver 

V;.@ I [ .1 i Dielectric sample I 

\ 

Source Receiver 

/ 1 I 
Metal plate 

Metal plate 

(a) (b) 

Figure 3-7. Basic connection of the probe \Vith the analyzer 
(a) Connection number one (b) connection number two 
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Source Receiver 

l I 

Dielectric sample 

(a) 

Source 
Receiver 

l I 

Dielectric sample 

(b) 

Figure 3-8. The hvo possible ways to connect the double finger probe. We denote the 
connection in (a) as + + - - and the connection in (b) as + - + -. 

3.3.1 Shielding effect 

As we mentioned in section 3.2.3, the wiring geometry had a great effect on the 

measurements. The parasitic capacitances of the wires have values similar to the output 

capacitance from the probe or more, therefore any changes in these values affect the 

overall result very much. From our experiments, we observed that sometimes the output 
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did not respond to the changes in the sample, because changes dominated the fluctuating 

stray capacitance. The length of the wires, their position relative to each other, and any 

motion in the whole system, produced a large change in the parasitic capacitance, and gave 

an erroneous response from the probe. 

To decrease the effect of the relative position of the wires, we tried fixing their 

position at the beginning by bundling them. Although this solution decreased the effect of 

the relative position and the motion in the system, it increased the absolute value of the 

parasitic capacitance of each wire. This solution made the value of the parasitic 

capacitances much larger than the output capacitance from the probe. This means that any 

changes in the ·output response due to changes in the sample cannot be seen, because this 

change is much smaller than the overall response. 

To solve this problem properly, we used coaxial cables to make all of the 

connections in our system. The coaxial cable has lower parasitic capacitance than open 

wires, and also provides good shielding. With the coaxial cable, the overall response 

improved very much, and it became more stable and flexible to any changes in the 

position. 

3.3.2 Effect of grounding the bottom metal plate 

As we mentioned before, our measurement system consisted of an opened flat 

parallel plate capacitor lying against a common substrate. Most of the industrial samples 

have a dielectric material lying against a metal material. We modeled these samples by a 

plastic sheet sample lying on a metal plate. This bottom metal plate may work as one 

plate of a capacitor which consists of the receiver or the source as a second plate, 
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especially if the thickness of the dielectric material is not large. In the latter case, the 

electric field generated at the source may penetrate the whole dielectric material and 

terminate on the bottom metal plate. One of the most important points needing to be 

' 
studied in this case is how much the output capacitance is affected if this metal plate has 

been grounded or kept floating. In practice, the grounding of the base of the dielectric 

material can be difficult, therefore we need to study this effect especially with thin 

dielectric material. 

We built our system to study this effect with ten sheets of plastic material with a 

thin metal plate underneath the sheets, and used prototype capacitor sensors. We used 

this set-up just· with connection number two because with· connection number one the 

metal plate could not be connected to ground. We collected data by varying the number of 

fingers, finger spacings, finger dimensions, and operating frequencies. 

Figures 3-9, 3-10, and 3-11 summarize the experimental results. All of these figures 

show the effect of grounding the bottom metal plate under different circuit configurations 

in order to show that the overall results apply to any system configuration. For instance, 

Figure 3-9 shows the effect of grounding the metal plate using a double wide finger probe 

connected in connection number two with single spacing between fingers at 100 kHz 

operating frequency. In Figure 3-10, the number of fingers has been changed. while in 

Figure 3-11, the type of connection has been changed. We notice that although the figures 

have some differences in the system setup, the overall behavior due to grounding the 

bottom metal plate is still the same. It is noticed from these figures that the difference 

between keeping the metal plate grounded or floating decreases as the thickness of the 



www.manaraa.com

46 

• Floating plate , x grounded plate 

220.00 

• - • X V) X .s • Q) • X 0 
c: 200.00 g • X ·e 
'0 • X < 

• • X 
180.00 • X 

X 

160.00 
>.< 

0.00 2.00 4.00 6.00 8.00 10.00 
Number of sheets 

Figure 3-9. Effect of grounding the bottom metal plate using a double wide finger 
probe with single spacing between fingers, connection ++--operating frequency 

100kHz 
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Figure 3-10. Effect of grounding the bottom metal plate using single \Vide finger 
probe \Vith single spacing between fingers, operating frequency 100kHz 
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Figure 3-11. Effect of grounding bottom metal plate using double \Vide finger probe 
with single space behveen fingers, connection + - + - operating frequency 100 kHz 

dielectric material increases. This may be due to the small value of admittance when the 

thickness is smal~, therefore this small value is more sensitive to any changing in the 

setup. This result is independent of any other factors, and will help simplify future 

measurements of industrial samples in which it may be difficult to ground the base metal. 

3.3.3 Operating frequency effect 

The operating frequency of the system means the input frequency supplied to the 

source electrode using the HP 4194A. As mentioned in section 3.2.2, we measured the 

admittance between the source and the receiver. The admittance value is related to the 

capacitance between the source and the receiver by 

y = jroC = j27tf c (3.6) 
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This equation illustrates that the linear relationship between the admittance and the 

frequency. To test our experiment for this relationship, we measured our prototype 

capacitors at two different frequencies: 100 kHz, and 50 kHz. We tested the effect of the 

' 
frequency factor with various circuit connections, number of fingers, finger spacing, and 

finger areas. The values of admittance corresponding to different thickness of the plastic 

sheets were measured with the impedance analyzer. The analyzer was set to a short 

integration time with a data average of 32. The probe was connected in the absolute 

mode. Figures 3-12,3-13,3-14,3-15,3-16, and 3-17, show the main results. All of these 

figures show that the effect of changing the operating frequency on the admittance does 

not depend on 'any configuration of the system. For instance, Figures 3-12 and 3-13 show 

the effect of changing the frequency at different finger dimension using circuit connection 

number one. Figures 3-12 and 3-14 show the effect of changing the frequency at different 

spacing between the fingers, while Figures 3-12 and 3-15 sho\v the effect of different 

circuit connections in a single space case. Figures 3-16, and 3-17 show the effect of 

double fingers with two different combinations. From all of these figures, we observed 

that the values of admittance doubled, as the frequency was doubled. This means that the 

admittance also increases as the frequency increases, therefore to get better response from 

the probe, it is better to operate it at higher frequency. The practical limit of operating the 

system at a high frequency is controlled by the gain-bandwidth of the electronic devices: 

the current amplifier and the impedance analyzer. For this reason, we tried to operate our 

system at the maximum frequency allowed according to the gain-bandwidth curve of the 

amplifiers. 
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Figure 3-12. Effect of changing the operating frequency using single narrow finger, 
single space between fingers, connection one 

• 100 kHz , x 50 kHz 

4.00 

• 
(j) 3.00 - • .:.. 
ou 
0 

X c • .E • E • "0 2.00 - • < X • • X 
X X 

1.00 - X X X X 

0.00 
0.00 2.00 4.00 6.00 a.oo tO.OO 

Number of sheets 

Figure 3-13. Effect of changing the operating frequency using single wide finger, 
single space behveen fingers, connection one 
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Figure 3-14. Effect of changing the operating frequency using single narrow finger, 
double space between fingers, connection one 
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Figure 3-15. Effect of changing the operating frequency using single narrow finger, 
single space between fingers, connection two 
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Figure 3-16. Effect of changing the operating frequency using double narrow finger, 
· · single space behveen fingers, connection hvo ++ --
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Figure 3-17. Effect of changing the operating frequency using double narrow finger, 
single space behveen fingers, connection hvo +·+-
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3.3.4 Liftoff effect 

The liftoff distance is defined as the vertical distance between the probe and the 

sample. This distance affects the admittance value especially if we use the probe in the 

' absolute mode. We studied this factor using the plastic sheet sample with a bottom metal 

plate under the sheets. We used a prototype probe of length 6.96 mm , width 1.67 nun, 

and 1.67 mm spacing between fingers and set the impedance analyzer to short integration 

time and 32-point averaging. A general gage \Vas used to measure the liftoff distance. 

Figure 3-18 displays the output signal responses from a single electrode source/receiver 

probe as a function of the liftoff distance. As indicated in Figure 3-18, the experimental 

admittance versus liftoff curve initially decreases rapidly followed by a recovery. This 

recovery was discussed by other investigators (Gimple, 1987; Shull et al., 1990). Gimple 
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Figure 3-18. Effect of the liftoff on the admittance 
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conjectured that the recovery was caused by parasitic capacitive coupling between the 

probe and grounding points in the environment. Shull assumed that this recovery effect 

' 
was caused by the capacitive coupling to any conducting planes in the probe vicinity. 

They reduced this recovery effect by placing the workpiece on a nonconductive pedestal 

above the ground plate. The response of the probe with the liftoff can be modeled by two 

capacitors in series. One of these capacitors due to the liftoff, Clirh and the second one is 

the capacitance of the dielectric material and the parasitic capacitances, Cc. The second 

capacitor is constant when the liftoff distance changes, while the first one varies with the 

liftoff. The measured capacitance is the equivalent of the two capacitors in series as given 

in the following equation 

C 
_ CupCc 

eq-
Ctift + Cc 

(3.1) 

From the above equation, we notice that if Clift is small compared to Cr: (this happens when 

the liftoff distance becomes big the equivalent capacitance reduces to fixed number equals 

C1ifr which is small. But, when Ctift is in the range of Cr: the equivalent capacitance 

decreases by decreasing the value of C1ift (this corresponds to the first region in Figure 3-

18). In our experiments we can minimize the effect of the liftoff and the recovery by 

taking all of our measurements with a small liftoff. 

3.3.5 Finger spacing effect 

The spacing between fingers mainly means the spacing bet\veen the source and the 

receiver fingers. To study the effect of the spacing between fingers on the admittance 
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value, we tried the main connections under different variations of the other factors. We 

used the same plastic sheet sample with the metal plate, and used the probe in the absolute 

mode with the same setup of the impedance analyzer. We tried two different spacings: 

' 
1.67 mrri, and 3.41 mm. We noticed that in connection number one the admittance 

changed slightly or sometimes did not change with change in the spacing between the 

source and receiver fingers (shown in Figure 3-19 ). This is because the capacitances (C1 

and C2) in connection number one are formed between one of the electrodes of the probe 

and the metal plate. Each capacitor is a parallel plate capacitor. The system in this case 

can be modeled by two capacitors in parallel as shown in Figure 3-20. These two parallel 

capacitances are not effected by changing the separation between them as long as there is 

no coupling between capacitors. Therefore, there is a minimal relation between these two 

capacitances and the space between the fingers. 

On the other hand, we notice in Figures 3-21, 3-22, 3-23, 3-24, and 3-25 that the 

admittance value decreases as the spacing between the finger increases. All of these 

figures study the effect of changing the admittance in a circuit of connection number two. 

They show that the effect of changing the spacing between fingers in connection number 

two is almost the same. For instance, Figures 3-21 and 3-22 show that the effect of 

spacing is the same at different frequencies. Figures 3-22 and 3-23 show the same thing at 

different width of the probe. Figures 3-21, 3-24, and 3-25 show the effect at different 

number of fingers and different connection of the double fingers. Although the space 

between the fingers was doubled, the admittance values did not decrease by one half. This 

means that the relation bet\veen the admittance and the spacing is not exactly Y =kid, 
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Figure 3-19. Effect of changing the space in connection one 
narro'v single finger probe, 100 kHz 
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Figure 3-20. The model of the probe in connection number one 
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where d is the spacing between the fingers, and k is a proportionality factor. This can be 

explained in different ways: firstly, the admittance in the open flat capacitor does not obey 

the simple theory of parallel plate capacitors. The spacing between fingers, which was 

' 
represented by symbol a the spatial frequency, related to the capacitance in an exponential 

form. Secondly, the measured admittance is coming from two capacitances: the 

capacitance of the source and the receiver, and the parasitic capacitance of the system. 

The first capacitance is the one that is changed by changing the spacing between fingers, 

but the second capacitance is constant under the same \viring system and devices. For this 

reason, the admittance value has two components, one variable and one constant. Because 

Of this, if \Ve want tO Suppress the COnstant admittance, We need to SUbtract this value from 

all measurements. In practice, the important thing that needs to be taken under 
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Figure 3-21. Effect of finger spacing using single narro\V finger 
connection two, operating frequency 50 kHz 
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Figure 3-22. Effect of finger spacing using single narrow finger 
connection two, operating frequency 100 kHz 
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Figure 3-23. Effect of finger spacing using single wide finger 
connection two, operating frequency 100 kHz 
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Figure 3-24. Effect of finger spacing using double narrow finger 
connection two + +- -, operating frequency 100 kHz 
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connection hvo + - + -, operating frequency 100 kHz 
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consideration is that the admittance value of the capacitor probe decreases as the spacing 

between fingers increases. 

3.3.6 Finger dimensions effect 

' The area of the source finger or the receiver finger is the second important 

parameter on the probe side that affects the measurements. We studied this factor under 

the same setup of the analyzer and used the same sample and probe. We tested the effect 

of this factor under different variations of the other factors. Figures 3-26, 3-27, 3-28, 3-

29, 3-30, 3-31 summarize the most important results. These figures show that the 

response of the probe due to changing in the probe dimension is not effected by other 

system setups:· For instance, Figures 3-26 and 3-27 show the effect of changing the 

dimension of the fingers at different frequencies. Figures 3-26, 3-28, and 3-29 show this 
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Figure 3-26. Effect of finger dimensions using single finger probe, single space, 
connection one, operating frequency 100 kHz 
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Figure 3-28. Effect of finger dimensions using single finger probe, double space, 
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Figure 3-29: Effect of finger dimensions using single finger probe, double space, 
connection two, operating frequency 100 kHz 
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Figure 3-30. Effect of finger dimensions using double finger probe, single space, 
connection two + + - -, operating frequency 100 kHz 
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Figure 3-31. Effect of finger dimensions using double finger probe, single space, 
connection hvo + - + -, operating frequency 100 kHz 

effect at different spacing between fingers and for different types of connections. While 

Figures 3-30 and 3-31 show this effect at double number of fingers at the two different 

connections. From these figures, we notice that the admittance value increases as the area 

of the fingers increases. But the admittance value does not increase by the same factor as 

the area increases. This can be explained by the second reason \Ve discussed in the 

spacing effect. The admittance value consists of a variable value related to the capacitance 

of the probe and a constant value related to the capacitance of the system. We notice from 

the Figure 3-26, 3-27, and 3-28 that the admittance almost increases by the same factor as 

the area increases. This is due to the fact that the constant admittance value in this case is 

small compared with the variable admittance, therefore the change in the variable value 
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due to the change in the area seems to be dominant. In the other cases, the constant and 

the variable admittances are in the same range. 

3.3.6 Number of fingers effect 

' 
Number of fingers means the number of fingers which are connected as a receiver 

or as a source, not the total. We studied this effect using prototype probes in two cases: 

with a single finger on each side of the source or the receiver and with double fingers on 

each side. We used the same setups for the analyzer as the ones we used in the previous 

parts. We tested this factor also under different variations of the other factors. In the case 

of double fingers, we have two options to perform the connection: firstly, connect the two 

adjacent fingers as a receiver or as a source (connection ++--); secondly, connect the first 

finger as a source, then the neighboring one as a receiver, then the next one as a source 

again, and the last one as a receiver again (connection +-+-) (shown in Figure 3-8). 

Figures 3-32, 3-33, 3-34, 3-35, 3-36, 3-37, and 3-38 display the most important results. 

These figures show that the effect of the number of fingers is not changed with different 

system setups. For instance, Figures 3-32 and 3-33 show this effect at different finger 

dimension. Figures 3-32 and 3-34 show this effect at different frequencies. Figures 3-32 

and 3-35 show this effect at different spacings while Figures 3-36, 3-37, and 3-38 show 

this effect using connection number two in its two possibilities. In general, we notice that 

the admittance value increases as the number of fingers increases. This is because an 

increase in the number of fingers means an increase in the area of the probe, and we found 

in the last section that the admittance increased by increasing the area of the probe, which 

increases the current (see Figure 3-7), we also notice from the Figures that connection +-+-
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Figure 3-32. Number of finger effect, using narro'v probe, single space, 
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Figure 3-33. Number of finger effect, using \Vide probe, single space, 
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Figure 3-34. Number of finger effect, using narrow probe, single space, 
connection one, operating frequency 50 kHz 
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Figure 3-35. Number of finger effect, using narrow probe, double space, 
connection one, operating frequency 100 kHz 
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Figure 3-36. Number of finger effect, using narro\v probe, single space, 
connection two++ - -, operating frequency 100 kHz 
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Figure 3-37. Number of finger effect, using narrow probe, single space, 
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Figure 3-38. Number of finger effect, using narrO\V probe, single space, 
connection hvo, operating frequency 100 kHz 

has an admittance value larger than that of connection ++--. This is due to the long 

distance between the last finger of the source and the last finger of the receiver. As 

mentioned in section 3.3.5 the capacitance decreases as the spacing between fingers 

increases. This means that the fingers at the ends have less capacitance than the fingers in 

the middle, but in the second connection, all fingers contribute with the same capacitance. 

According to this, the total capacitance in the first connection is less than the one in 

second connection. 
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3.4 Determining the thickness of a dielectric material 

One of the main objectives in our research is determining the thickness of a 

dielectric material. It is known that the capacitance value of the probe differs from one 

dielectric material to another which is not like eddy current probes. In eddy current 

probes, we can determine the thickness of a dielectric coating on a conductor easily 

because the impedance of the probe is not sensitive to the type of the dielectric material. 

The impedance of the probe, in the eddy current probes, is just sensitive to the thickness. 

In capacitive probes, the problem becomes more difficult because the value of the 

capacitance depends on the dielectric constant of the material between the probes, as well 

as on the liftoff distance. One of the ways we reduced the effect of the liftoff was to make 

all of our measurements of the thickness with zero liftoff, i.e., putting the prob~ directly in 

touch with the sample. 

To measure the dielectric thickness, an interdigital probe with a length of 200 mil, 

a \Vidth of 8 mil, and a space between fingers of 8 mils, ID-8 (see table 3-1), was used in 

the absolute mode. An amplifier was placed near the receiver output to boast the small 

signal. Data was gathered with the impedance. analyzer in the Gain/Phase mode with 

medium integration time and a data average of four. We connected the source finger with 

the output channel of the analyzer, and the output of the amplifier with the test input 

channel. We connected the output channel also with the reference input channel, because 

we only had one output from the probe in this case, and because we needed to measure the 

gain with respect to the input channel of the probe as shown in Figure 3-39. With this 

connection, the measured values from the analyzer in this case were the gain and the phase 
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Figure 3-39. The connection of the probe \Vith impedance analyzer 

of the output of the probe relative to the input of the probe. From these measured values, 

. 
we can find the admittance value using equation (3.5). We set the test channel at lM.Q 

impedance and 0 dB attenuation, and set the reference channel at 50.Q impedance and 

20dB attenuation. We set the output channel of the analyzer at single mode 

measurements, and the oscillator level to 15 dBm. The positioner controlled the vertical 

distance between the sample and the probe. A zero liftoff distance (vertical distance) of 
.· 

the probe was maintained by a spring force on the probe. 

Because the capacitance of the probe depends upon the dielectric material, there is 

no unique relationship between the admittance and the thickness. Our approach was to 

build a look-up table or graph for each material that related the admittance values with the 

corresponding thicknesses of the same kind of material at different operating frequencies 

and different probe configurations. Then, to determine the thickness of an unknown 



www.manaraa.com

70 

sample from this material, we measure the admittance and look up the corresponding 

thickness of this admittance from the corresponding graph. To get a more accurate value, 

we can repeat this measurement using different graphs of the same material (these graphs 

~ 

can be built by repeating the measurements of the admittance at different probe and system 

configurations), then calculate the average of all of these readings. 

We applied this approach to the plastic sheets sample of ten sheets. First, we built 

the look-up graphs using measurements we had at 300 kHz and 500 kHz operating 

frequencies and at different spacings between the source and the receiver fingers. The 

measurements were repeated for five different spacings between the fingers of ID-8: 8 mil, 

24 mil, 40 mil,' 56 mil, and 72 mil. The spacings were selected according to the allowable 

spaces between the fingers as discussed in section 3.8. Figures 3-40, 3-41, 3-42, 3-43, 3-

44, 3-45, 3-46, 3-47, 3-48, and 3-49 display the look-up graphs for this material. We can 

improve the accuracy of these graphs if we use many measurements. As the number of 

measurements used to build these graphs increases, the accuracy of these graphs increases. 

The accuracy of these graphs increases also, if the measurements are repeated at different 

times and setups and the average taken of the . ~hole set measurements. To get better 

accuracy in measuring the unknown thickness, it is important to increase the number of 

points in the look-up table by making more measurements on the thicknesses in between 

the values shown. In this way the percentage of error in the approximation decreases. 

After creating the look-up graphs we used them to determine the thickness of an 

unknown sample. The same probe was used with the same spacings and operating 

frequencies to measure the admittance of this sample. After that we used the look-up 
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graphs to determine the corresponding thickness for each admittance value. Finally we 

measured the actual thickness of the sample using a digital micrometer. Table 3-3 

summarizes the results and also shows a comparison between the actual measured 

~ 

thickness from the micrometer and the one calculated from the look-up graphs. The 

maximum percentage of error in this case less than or equal4.7% of the actual thickness if 

we assume that the measured thickness from the micrometer is 100% accurate and there is 

no error in this measurement. 

The error in the measurement of the thickness is caused by several factors. Firstly, 

the measured thickness from the micrometer was not exact. Secondly, we measured the 

thicknesses in the x-axis of the look-up graph by using a number of sh~ets and measuring 

the corresponding thickness using the micrometer and then divided this value by the 

number of sheets to get the average value of the thickness of the sheet. To get the 

thickness of n sheets, we multiplied the average thickness by the number of sheets n, 

assuming that each sheet has the same thickness. Actually, this is impossible. This factor 

can be reduced if we used a better technique to measure the thickness of the dielectric 

material. Thirdly, we built our look-up graphs using limited measurements. This cause of 

error can be reduced, if we use more measurements to build the look-up graphs. 

3.5 Detecting fla,vs in dielectrics 

Detecting flaws in a dielectric is one of the most important applications of the 

capacitive sensor in NDE. We tested this application by using a plastic sample of 

thickness 0.697 inch with different types of slots. This sample has mainly two widths of 

the slots: 0.25 inch and 0.105 inch. Each type has five different slots of different depths: 
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Table 3-3. Determining the thickness of unkno,vn sample 
Spacing (mils) Measured Admittance2 Expected thickness3 

/Frequency (kHz)1 (mS) (mils) 
8/500 1.1624 23.69 

24 /500 0.6613 24.09 
40 1500 0.2992 24.04 
56/500 0.1815 23.16 
72 /500 0.0989 22.93 
8 /300 0.6118 24.05 

24/300 0.3506 22.52 
40/300 0.1616 22.42 
56/300 0.095 23.69 
72/300 0.0516 24.73 

1 Spacing between the source and the receiver of the probe I Operating frequency of the system 
2 Measured admittance using the probe 
3 Expected thickness using the previous look-up graphs 

+0.70 
+2.40 
+2.25 
-1.54 
-2.50 
+2.25 
-4.30 
+4.70 
+0.71 
+3.80 

4 Percentage of error = (expected thickness-actual thickness)/actual thickness * 100% , actual thickness 
measured by the micrometer was 23.52 mil (0.588 mm). 

surface breaking slot of depth 0.697, 0.662, 0.627, 0.522, 0.347 inch. Figure ~-6 displays 

different views of this sample. This sample was used in two ways: one of them was by 

using the slots as surface slots, the second way was to flip it over so the slots became sub-

surface slots. Each slot was scanned separately from the bottom to top and from left to 

right. Two types of probes (SD-200 and ID-40) were used to perform this scanning. Both 

of them were used in the differential mode. The impedance analyzer was used in the Gain 

Phase mode with J?edium integration time and 32 point averages. A current amplifier was 

installed on each receiver finger. Because of the small size of the probe, we could not 

build a differential amplifier on the top of it, therefore, we used the analyzer and the 

software on the computer to find the differential signal between the two electrodes. The 

source of the probe was connected with the output terminal of the analyzer. The receiver 
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electrodes were connected with the reference and test channels of the impedance analyzer. 

The impedance analyzer was set to IMQ and 20 dB for both input channels, while the 

output channel was set at single measurement mode. 

The computer was used to control the position of the sample and the motion of the 

motor. Also, the computer \vas used to capture the data and store it in a file. To get the 

differential signal between the two receiver electrode signals, a certain processing 

technique, developed at the NDE center called process 2 (developed by Mr. Nakagawa), 

was used to perform the subtraction between the two captured outputs. In some cases, we 

used this processing technique to reduce the effect of the noise. Two types of softwares 

. 
have been used to analyze the data: Surfer16 and Grapher for windows. Surfer16 was 

used to analyze the 20 data, while Grapher was used to analyze the lD data. Each type of . 
slot has been analyzed using 3D plot, contour plot, image response, and lD plot. We 

noticed from our experiment that the two types of sensors did not give good responses for 

sub-surface slots of depth more than 0.627 inch. To improve the penetration depth of the 

probe, we need to increase one of the previous factors: the number of fingers, the 

dimension of the finger, or the spacing between fingers. 

The following figures display the most important results. Figures 3-50 to 3-53 

show the response of SD-20 due to the narrow slot of depth 0.697 inch (surface breaking 

slot). Figure 3-50 show a lD plot of this response. Figures 3-51, 3-52, 3-53 show the 2D 

plots of the response in different forms: a contour plot, an image, and a 3D plot. From 

these figures, it is noticed that the probe response due the surface breaking slot is a valley 

followed by a peak. In the differential mode, the probe has two capacitances: first, 

: .... 
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between the source and the positive electrode of the receiver (C+). Second, between the 

source and the negative electrode of the receiver (C.). The displayed response is the 

difference between the two capacitances. The valley or the peak is produced due to the 

. ~ 

unbalance in the capacitances C+ and C .. These two capacitors are not equal due to the 

difference in the dielectric constant of the material between the plates. We notice from 

Figure 3-50 that the positive peak and the negative peak are not identical. This is due to 

two factors: first, the difference in the amplifier circuit for each electrode due to the 

difference in the common-mode signal for each amplifier and each value of resistor in 

each circuit. Second, it is assumed that the sample has the same thickness before and after 

the slot, but i~ fact the sample has a slight difference in the thickness. 

Figures 3-54, 3-55, 3-56, and 3-57 show the response of the probe due the presence 

of a surface breaking wide slot. We notice from. these figures that the overall response of 

the probe in this case is the same as the one for narrow slot. There are some slight 

differences in the response of the wide slot. For instance, the positive or the negative 

peaks in the wide case becomes a little bit flat. This is because the unbalance inC+ and C. 

remain longer due to the increase of the width ~~the slot. The relationship between the 

1 D response of the probe in this case and the position of the probe above the slot is 

explained in detail in Figure 3-58. 

Figure 3-59, 3-60, 3-61, 3-62 show the response of the probe due to buried slot of 

depth 0.662 inch. We notice from our experiments that the two probes (SD-200 and ID-

40) can not detect a buried slot of depth more than 0.627u. After this depth the probe can 

give a weak response that is difficult to analyze, and the noise becomes large so that the 

•. :c.~ ... ~ 

· .... •; - .... 
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Figure 3-52. The image response of SD-200 capacitive probe 
· · to the narrow surface breaking s lot 

Figure 3-53. 3D plot of the response of SD-200 capacitor probe 
to the narrow surface breaking slot 
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Figure 3-56. Image plot of SD-200 capacitor probe 
to the wide surface breaking slot 

Figure 3-57. 3D plot of the response of SD-200 capacitor probe 
to the wide surface breaking slot 
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Figure 3-60. Contour plot of the response of SD-200 capacitor probe 
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Figure 3-61. Image of the response of SD-200 capacitor probe 
to the narrow buried slot of depth 0.662 inch 

Figure 3-62. 3D plot of the response of SD-200 capacitor probe 
due to the narrow buried slot of depth 0.662 inch 
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signal to noise ratio decreases. In the buried slots, the response starts with the peak 

instead of the valley. This difference is due to the variation in the dielectric material 

(plastic above the air) between the electrode plate above the slot and· the source. 

' Figures 3-63, 3-64, 3-65, and 3-66 display the response of the interdigitized probe 

ID-40 due to the wide surface breaking slot. From these figures, we notice that the 

response of the probe is almost the same as the one from the square directional probe. The 

slight difference in this case is due to the differences in the dimensions of this probe and 

the spacing between the fingers. 

Our next step is using the above response to determine the width and the length of 

the slot. From ·Figure 3-58, we notice the response of probe starts decreasing when the 

edge of the first electrode approaches the slot. It returns to the neutral level after the last 

edge of the first electrode approaches the slot. The process repeats with the opposite sign 

as the probe exits the slot. This shows the measured signal is the convolution of the 

transfer function of the probe and a square rectangular signal corresponding to the width 

of the slot. The width of this signal approximately equals the width of the slot plus the 

width of the transfer function of the probe. Because of that, we need to determine the 

transfer function of the probe. Figure 3-67 displays the transfer function of the probe 

using a thin wire. From this figure, the width of the transfer function is 19-6.5=12.5 mm 

(0.5 inch). As an example of calculating the width of a slot consider Figure 3-54. From 

this figure, the signal starts decreasing at 3.5 mm and returns to the neutral value at 22 

mm. The width of the response is 22-3.5 = 18.5 mm (0.74 inch). The calculated width of 

the slot in this case is 0.74-0.5 = 0.24 inch. There is a slight difference between the 
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Figure 3-65. Image of the smoothed response of ID-40 capacitor probe 
due to the wide surface breaking slot 

Figure 3-66. 3D plot of the response of the ID_ 40 capacitor probe 
to the wide surface breaking slot 
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measured width (0.25 inch) and the calculated \Vidth due to: firstly, the effect of fringing, 

secondly, some measurement error of the width of the slot, thirdly, approximation error in 

our calculations, and fourthly, experimental errors. 

To determine the length of the slot, we use the same approach with some 

modifications. One of these modifications is using the length of the probe instead of the 

width. Also we need to use either a slot in they-direction to do the calculations or use the 

image response. 

To determine the width and length more accurately, we restored the image, then 

calculated the dimensions of the slot from the restored image. To restore the image, the 

transfer function· of the probe needs to be determined. We used a thin wire of thickness 

0.0065 inch to represent the delta function required to find the impulse response. Figure 

3-67 displays the impulse response of the SD-200 probe. This impulse response 

represents a slice from 2D plot. \Ve placed both the transfer function and the response of 

the probe due to the. slot in a DEC computer and restored the image with MA TLAB. Two 

techniques were tried for restoration. The first technique was inverse filtering, while the 

second one was Wiener filtering. Wiener filter has the following form: 

(3.7) 

where H(u,v) is· the Fourier transform of the transfer function. 

F(u,v) is the Fourier transform of the restores image. 

G(u,v) is the Fourier transform of the measured image. 

-- -·· --· ··--------·---··-'"·--·--~--
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The G(u,v) is the fourier transform of the 2D image shown in Figure 3.56. The H(u,v) 

was calculated using the 2D image of the transfer function shown in Figure 3.67. 

Different values for K were tried, the best value was 500. The output result of inverse 

filtering was bad and could not be used at all. \Vhile the output result of the Wiener filter 

was not so bad, but also it did not restore the image correctly. Figure 3-68 show the 

results of the restoration of the image with a Wiener filter. From Figure 3-68c, we used a 

slice of a 2D image to measure the width of the probe. The width of the slot was 

determined by measuring the maximum and minimum variation in the intensity, then 

using the middle point fron1 both sides of the image to calculate the \Vidth. From the 

restored data, the width of the slot equals 0.24 inch with a percentage of error equals 4%. 

A better restoration can be obtained by improving the transfer function of the probe. In 

the future, we will work n1ore on restoring the output image from the probe using better 

techniques and control the parameters that effect the restoration. 
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Figure 3-67. Transfer function of the SD-200 probe due to thin \Vire (0.0065 inch) 
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(a) (b) 

(c) 

Figure 3-68 The restoration of the image using T\1A TLAll 
a) the transfer function b) the original data c) restored data 
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CHAPTER FOUR 

DISCUSSION 

4.1 Introduction 

In the last chapter we summarized the most important results obtained using 

different capacitor probes. The overall response of the probes due to various factors has 

been studied. In this chapter, we will analyze these data quantitatively. Also in Chapter 

three, the numerical method was discussed. A numerical method was used to check the 

strange behavior of the probe by varying the thickness of the dielectric material. In this 

chapter, we tie the experimental work with the numerical work especially after we 

discussed the experimental \VOrk completely in the last chapter. 

4.2 Quantitative analysis of the data 

As we discussed previously, the measured admittance of the capacitive probe is 

affected by various. factors: grounding the bottom metal plate, finger spacing, etc. The 

general relationship between the admittance value and these factors has been studied in 

the last chapter. In this section, we will try to study the quantitative relationships between 

the admittance and these factors. 

The first factor is the effect of grounding the bottom metal plate. As shown in 

Figures 4-9 to 4-11 and discussed in section 4.3.2, the grounding of the metal plate had 

little effect on the measured admittance especially when the thickness of dielctric is larger 

a certain number (12 mils), and this result is helpful in simplifying the measurements of 

industrial samples. Table 4.1 summarizes quantitatively the effect of this factor on the 
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Table 4-1. The effect of grounding the metal plate using double narro\V finger probe 
with single space behveen fingers, connection + - + - and at 100 kHz . 

Number of sheets 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Measured Y (nS) 
with floating plate 

179.12 
182.82 
185.91 
191.20 
197.06 
202.30 
207.20 
211.95 
216.42 
220.98 

Measured Y (nS) 
with grounded plate 

162.02 
169.42 
176.43 
185.55 
191.96 
196.66 
203.07 
209.32 
210.40 
215.83 

* Percentage of diff. =(column two-column thrcc)/column two * I 00% 

Percentage of diff 
% 
9.5 
7.3 
5.1 
3.0 
2.5 
2.7 
2.0 
1.2 
2.7 
2.3 

admittance value. This table shows the data represented in Figure 4-9. 

We notice from Table 4-1 that the effect of grounding the metal plate does not 

exceed 10% in the worst case. From table 4-1 and Figures 4-9 to 4-11 we see that the 

effect of keeping the botton1 metal plate floating is large when the thickness is small, but 

when the thickness of the dielectric material increases this effect decreases. This is 

because when the thickness is small, the admittance value is small. Therefore, the 

admittance is sensitive to any change in the system. It is also clear in Table 4-1 that the 

general behavior of the admittance due to the change in thickness of the dielectric 

material is the same. Therefore, we can study some ungrounded industrial samples with 

small amount of error in the results especially if it is difficult to ground these samples. 

The second factor is the effect of the operating frequency of the system. It was 

observed in section 4.3.3 that the admittance increased by the same factor as the 
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frequency increased. The relationship between the admittance and the frequency applied 

in all cases at different connections, spacings, number of fingers, and finger dimensions. 

To study this effect quantitatively, Table 4-2 sho\vs the measured admittance value at 100 

kHz and at 50 kHz. Column four shows the ratio between the measured admittance at the 

Table 4-2. The effect of changing the operating frequency using narro\v single finger 
probe single space, connection number one. 

Number of sheets I Y I (J.l) I Y I (J.l) Ratio= 
at f= 100kHz at f= 50 kHz column 2/ column 3 

1 4.757 2.387 1.993 
2 3.336 1.681 1.985 
3 2.733 1.316 2.076 
4 2.403 1.210 1.985 
5 2.150 1.081 1.989 
6 1.895 0.986 1.923 
7 1.817 0.875 2.077 
8 1.709 0.860 1.987 
9 1.600 0.806 1.985 
10 1.525 0.768 1.986 

above two frequencies. We notice in Table 4-2 that changing the operating frequency by 

a factor two changes the measured adn1ittance by a factor that varies from 1.923 to 2.077. 

The average of column four equals 1.999 which is almost two. This indicates that the 

admittance has a linear relationship with the frequency. 

The third factor is the spacing between fingers. As discussed in section 3.3.5, the 

admittance decreased as the spacing between fingers increased. We found from Figures 

4-23 to 4-27 that the admittance did not decrease by the same factor as the spacing 

increased. This is due to the nonlinear relationship between the admittance and the 
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spactng as discussed in chapter one, and also due to the presence of two types of 

capacitance. One of these capacitances, the parasitic one, is constant and is not effected 

by changing the spacing. While the second one, the probe capacitance, is variable and is 

changed by changing the spacing. To study the relationship between the measured 

admittance and the spacing between the fingers quantitatively, we need to subtract the 

constant admittance from the total admittance, then determine the ratio between the 

variable admittances at different spacings to get the exact relationship. To calculate the 

constant capacitance, we used the following equations: 

KVt +C=Xt 

Vt+C=Yt 

KV2+C=X2 

v2 + c = Y1 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

where C is the constant capacitance, K is the assumed ratio between the variable 

capacitance with single space and double space, V 1 and V 2 are the variable capacitances at 

two different thickness of a dielectric. Xt and X2 are the calculated capacitances from the 

measured admittances at double space, Y 1, Y 2 are the calculated ones from the measured 

admittances at single space. Table 4-3 shows one case of the variable admittance at the 

two spacings: 1.67 mm and 3.41 mm. Column four shows the ratio between the column 2 

and column 3. The ratio varies from 2.36 to 2.01. As explained previously, this is due to 

the nonlinear relationship between the admittance and the spacing between the fingers. 

The fourth factor is the dimension ofthe probes. As discussed in section 4.3.6, the 

admittance increased as the dimension of the probe increased. The relationship 
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Table 4-3. The effect of the spacing between fingers using single narrow finger 
probe, connection number two, at 100 kHz. 

Number of sheets I Y I (nS) 
spacing = 1.67 mm 

I 110.69 
2 115.55 
3 118.33 
4 123.02 
5 126.99 
6 129.49 
7 133.99 
8 137.64 
9 140.99 
10 144.34 

I Y I (nS) 
spacing= 3.41 mm 

46.97 
50.11 
52.42 
54.83 
56.97 
59.87 
64.31 
67.03 
68.83 
71.56 

Ratio= 
column 2 I column 3 

2.36 
2.31 
2.16 
2.24 
2.30 
2.16 
2.08 
2.05 
2.05 
2.01 

between the admittance and the dimension of the probe was not linear due to the presence 

of the constant admittance, which was related to the parasitic capacitance. To study the 

effect of the dimension of the probes, it is better to subtract this constant capacitance first. 

Table 4-4 shows this relation for one of the measured cases. This table shows the 

variable admittance for two different dimensions with the ratio between these two 

admittances in column four. 

As shown in column four, the ratio between the admittance in the two dimensions 

varies from 1.28 to 1.33. The average value of these is 1.30, while the expected ratio, 

which equals the ratio between the two dimensions, equals 1.28. There is a slight 

difference between the expected ratio and the measured one. This is due to some errors in 

measuring the admittance value and in measuring the dimension of the probe. 

According to all of the above quantitative discussions, we find that the admittance of the 
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Table 4-4. The effect of changing the dimension of the probe using single finger 
probe, double space, connection two, at 100 kHz. 

Number of sheets 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

I Y I (nS) 
length = 8.88 mm 

67.62 
72.87 
76.77 
78.16 
82.93 
87.19 
91.00 
95.96 
100.05 
102.58 

I Y I (nS) 
length= 6.96 mm 

52.97 
56.11 
58.42 
60.83 
62.97 
65.87 
70.31 
73.03 
74.83 
77.56 

Ratio= 
column 2/ column 3 

1.28 
1.31 
1.28 
1.32 
1.32 
1.32 
1.29 
1.31 
1.33 
1.32 

probe has a linear relationship with the operating frequency and the dimension of the 

probes, while it has a nonlinear relationship with the spacing between the fingers. Also 

there is a slight change in the adn1ittance value due to the grounding of the bottom metal 

plate. Therefore,- to increase the admittance value of the probe for penetration, we can 

increase the operating frequency, the dimension of the probe, or the number of fingers. 

4.3 Con1parison \Vith the measurements 

One of the most important objectives of the numerical solution is checking the 

behavior of the probe due to the change of the thickness of the dielectric material. This 

objective can be achieved by comparing the results obtained from the numerical solution 

and the ones measured by the probe. As found from the measurements (shown in 

Chapter four), capacitance of the open plate capacitor increases by increasing the 
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thickness of the dielectric material. This kind of behavior seems to be in contradiction 

with the simple theory for the parallel plate model, therefore, a numerical program was 

used to test this behavior by finding the capacitance for different thicknesses. 

The open-flat capacitor sensor, which was illustrated in Figure 3-1, has been 

modeled in a numerical code. The source plate was fixed to 1 volt, the receiver plate was 

fixed to -1 volt, while the bottom 1netal plate was fixed to zero volts. The size of each 

grid was 0.02 mm, the nun1ber of iterations varied from 200 (at 0.1 mm) to 700 (at 1 

mm). The program was run on the DEC station 5000. The execution time varied from 10 

hours (at 200 iterations) to 24 hours (at 700 iterations). This code has been run for five 

different thicknesses. Table 4-5 sumn1arized these results. The average thickness of the 

plastic sheets (column one) was calculated by summing the thickness of ten plastic sheets 

(1.0025 mm or 40.1 mil), then dividing this nun1ber by ten. As noticed in the table, the 

numerical result shows the same kind of behavior for the open-flat capacitive probe as the 

measured result. As shown fron1 column three, the calculated capacitance increases as 

the thickness of the dielectric material increases. This n1eans that the measured response 

is almost correct. By comparing the nun1bers in columns two and three (see column 

four), it is noticed that there is a slight difference between these numbers \Vhich vary in a 

rather systematic way as the thickness increases. This difference may occur for various 

reasons: firstly, the numerical program used the ideal measurements of the thicknesses, 

i.e. it used the thickness of a number of plastic sheets by multiplying the average 

thickness of one of them by the number used. In fact the actual thickness of each 

individual sheet may vary from the average thickness calculated above. On the other 
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hand, the measured values used the actual thicknesses. Secondly, there might be a slight 

error in the dimensions of the probe which \vas modeled. Thirdly, there might be a small 

error in the modeling of the receiver-source-sample model. Figure 4-1 shows a 

comparison between measured values and the calculated values using a numerical 

method. We notice the same slight difference between both of these values. 

Table 4-5. Comparison between the measured capacitance and the numerically 
calculated capacitance from numerical solution for different thicknesses of 
dielectric material 

Thickness Measured Capacitance Calculated Capacitance Difference 
(mils) (pF) CpF) Meas.-Cal. 

8 145 139.56 4.43 
16 153.02 150.53 2.49 
24 159.49 162.31 -2.82 
32 167.64 171.85 -4.21 
40 174.34 176.23 -1.89 

140.00 + 

130.00 ---·L---L-~L__L_j__ 
140.00 1$0.00 1110.00 110.00 1110.00 

Moasured Capacitanco (pf) 

Figure 4-1. Caparison between n1easured capcitances and calculated ones from 
numerical method 
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CHAPTER FIVE 

CONCLUSIONS 

The capacitive probe is a very useful device for nondestructive evaluation of 

dielectric materials. It is sensitive to both surface and subsurface features in dielectric 

materials. From the characterization studies \Ve have shown, we found that the capacitive 

probe is capable of determining absolute values (such as thickness) in insulating 

materials, as well as detecting flaws or discontinuities of different types in the dielectric 

materials. 

As the configuration of the capacitive probe becomes more complicated, the study 

of its behavior analytically becomes more difficult. For this reason, developing a 

numerical model for the probe and the system is very in1portant. In our case, we used the 

finite difference method to model an -opened flat capacitive probe and the system used to 

measure the thickness of a dielectric material. From this model, we found that the 

admittance of the ·probe increased as the thickness of the dielectric material increased (it 

varied from 145 pF to 174 pF when the thickness varied from 8 mils to 40 mils). These 

results from the numerical method were close to those measured by the probe (the 

maximum percentage of error was less than 3.1 %). The numerical method (finite 

difference method) used to model this system is sensitive to the grid size, the number of 

iterations, and the boundary conditions in the system. If the grid size decreases or the 

number of iterations increases to improve the output results, the execution time to run the 

program increases very much. The numerical results can be improved by using other 
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numerical methods to model the system, such as the finite element method. It is less 

sensitive to the grid size and the number of iterations, and it is more suitable for 

complicated boundary conditions. On the other hand it is more complicated than the 

finite difference method. 

The capacitive probe has two modes of operation: absolute and differential. Each 

mode has advantages and disadvantages according to the applications. The absolute 

mode is very sensitive to the liftoff distance. Therefore, we need to control this distance 

when making any measurements. We usually use the probe in this mode to measure some 

absolute values of a dielectric material, such as thickness, porosity, dielectric constant, 

and density. On. the other hand, the differential mode reduces the effect of the liftoff, but 

it reduces also the sensitivity of the probe to the slowly varying features. It was used in 

this case to detect variations in the sample that are small in size compared with the 

probe's sensing area, such as slots or voids. 

This thesis studied the effect of various factors on the probe response. From our 

measurements we noticed the following points: first, shielding the wires was necessary to 

maintain a suitable signal-to-noise ratio and to get consistent results. Second, the 

admittance of the probe decreased rapidly as the liftoff distance increased. This decrease 

was followed by a recovery. The recovery was caused by parasitic capacitance coupling 

between the probe and the grounding points in the environment (Gimple, 1987). To 

reduce the effect of liftoff on measurements, measurements were taken with zero liftoff. 

Third, grounding the bottom metal plate, or in general grounding the sample, had little 

effect on the probe response especially when the thickness of the dielectric material larger 
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than 12.0 mils, but the grounded sample gave more stable and consistent results. Fourth, 

the admittance had a direct linear relationship with frequency. We found that the larger 

the admittance value, the better the response obtained; therefore, it is better to operate the 

' 
system at ~ higher frequency. On the other hand, the operating frequency was constrained 

by the gain-bandwidth of the current amplifier and the impedance analyzer. For this 

reason, we used the maximum allowable frequency of the system to get a better response. 

Fifth, the admittance of the probe increased as the dimensions or the area of the probe 

increased, the number of fingers increased, or as the spacing between the fingers in the 

probe decreased. So that to get more depth penetration it is better to increase the probe 

area or the numb~r of fingers for the receiver and the source. 

This work demonstrated several capabilities of the capacitive probes. These 

capabilities include measuring thickness of a dielectric material and detecting flaws or 

slots in a dielectric material. In measuring the thickness, the measured admittance is 

affected very much by the liftoff distance. therefore, it is important to control the liftoff 

distance before doing the measurements to get more accurate results. Because the 

capacitance value depends on the dielectric constant of the dielectric material, the 

measured admittance varies from one material to another. To measure the thickness of 

the material, which is related to the measured admittance, we suggested using look-up 

tables or graphs for this material to determine an unknown thickness of a sample from 

this material. These look-up graphs can be built under various configurations for more 

accuracy in the measurements, but it is required to control the liftoff distance in both the 

look-up graphs and the present measurements of the unknown sample. 
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The next application we discussed was detecting a flaw in a dielectric material. 

We found that the capacitive probe could detect the presence of both surface and sub-: 

surface features (such as slots). The probe could detect the surface slots better than the 

sub-surface ones. In the sub-surface slots, the probe did not give a good response for slots 

of depth more than 0.07 mil fron1 the top. The ability of the probe to detect deeper sub­

surface slots can be improved either by increasing the area of the probe or by increasing 

the spacing between the fingers of the probe. In this case, the penetration depth of the 

probe increases allowing the detection of a deeper flaw. By using the probe response, we 

measured the width and the length of the slots. Two attempts of measuring the slots was 

tried. The first technique using the raw data gave a good approximation of the 

dimensions. The second one used the restoration of the image by the Wiener filter. This 

technique needs more improvement to get better results. 

Various possibilities exist for future work. In terms of modeling, future 

possibilities are nun1erous. For instance, rather than modeling the system using a simple 

finite difference method, one can use other complicated methods such as the finite 

element methods. By using an advanced n1ethod, one can model complicated systems, 

and get better accuracy. Up to this point, all numerical work was focused on two­

dimensional features. In the future, three dimensional features can be modeled. 

From all of our results, various probes can be built for various applications. In the 

future, one can build the electronic circuit with the probe board itself. This kind of design 

will decrease the effect of the parasitic capacitance of the system, because the signal is 
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directly amplified. Also in this case, we could make a portable probe which can be used 

easily. 

In NDE, capacitive sensors can be used widely for dielectric materials. We can 

use these sensors for a variety applications. For instance, they can be used to detect the 

changes in dielectric constant of dielectric n1aterial, or they can detect the change of the 

density of this material. In the future, we may develop a new technique to measure the 

thickness of the dielectric material with different densities. Also we may try to develop a 

new technique to measure the depth of the slot using the response of the sensor. 
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APPENDIX A. 
SOURCE. CODE OF THE NUMERICAL METHOD 

% 
% 
% 

********************************************************** 
Program to calculate potential function using finite 
d~fference technique 
Initialize the required parameters . % 
********************************************************** % 

POTl=l.O; 
POT2=0.0; 
POT3=0.0; 
ER=3.7; 
ALPHA=l.S; 
H=2.0; 
% ********************************************************** 
% 
% 

Initialize the potential matrix . 
**************************************~******************* 

for i=1:121 
for j=1:385 

POT(i,j)=O.O; 
end 

end 
% ********************************************************** 
% Model the probe plates and the ground metal plate 
% 
% 
for 

********************************************************** 
i=ll1:112 
for j=67:150 

POT{i,j)=l.S+POT2; 
end 
for j=233:31G 

POT(i,j)=l.5+POT1; 
end 

end 
i=121; 
for j=1:385 

POT(i,j)=1.5+POT3; 
end 

•. 

% ********************************************************* 
% Begin scan the array · 
% Scan from northwest corner to southeast corner 
% ********************************************************* 
for k=l: 600 · 
k 
for ia=2:120 

for ja=2:384 
i=ia; 
j=ja; 
if(i<Sl) 

J\=4.0/H; 
B=2.0/H; 

· W= POT { i -1, j ) ; 
X=POT(i+l,j); 
Y=POT(i,j-1); 

·---~~-----~-·-~·--.. -··-···--·---·~~--- , ______ ......... -·--··-----------=.......--
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Z=POT { i I j + 1 ~ ; 
P=POT(i,j); 
POT(i,j)=FUN2(POT(i 1 j) 1 A,B 1 W,X,YIZ,ALPHA}; 

elseif((i>=52)&(i<=70)) 
A=2.0/H; 
W=POT(i-l~j); 

X= POT ( i + 1 I j ) ; 
Y= POT ( i I j -1 ) ; 
Z=POT ( i I j + 1) : 
POT(i 1 j)=FUNl(POT{i,j) 1 A,W,X 1 Y1 Z,ALPHA); 

elseif(i==71) 
A=2.0/H; 
B=l.O/H; 
W=POT(i-l,j); 
X=POT{i+l,j); 
Y=POT ( i I j -1) ; 
z =POT ( i I j + 1 ) ; . 
POT(i,j)=FUN2(POT(i,j),A,D,W,X,Y,Z,ALPHA); 

elseif((i>=72)&{i<=90)) 
A=l.O/H; 
W=POT(i-l,j); 
X=POT(i+1 1 j); 
Y=POT(i 1 j-1); 
z =POT { i I j + 1 } ; 
POT(i,j)=FUNl(POT{i,j),A,W 1 X1 Y1 Z

1
ALPHA); 

elseif(i==91) 
A=l.O/H; 
B=O.S/H; 
W=POT(i-1 1 j); 
X=POT{i+l~j); 

Y=POT(i~j-1); 

Z=POT(i 1 j+l); 
POT(i~j)=FUN2(POT{i,j) ,A 1 B,W,X 1 Y,Z,ALPHA); 

elseif({i>=92)&(i<=l10)) 
A=O.S/H; 
W=POT.( i-1, j} : 
X=POT(i+l,j); 
Y= POT ( i I j -1 ) ; 
z =POT ( i I j + 1 ) ; 
POT(i 1 j)=FUNl(POT(i 1 j) 1 A1 W,X 1 Y

1
Z

1
ALPHA); 

elseif(i==lll) 
A=O.S/H; 
13=0. 5./H; 
W=POT(i-l~j); 

X=POT(i+l 1 j); 
Y=POT(i,j-1}; 
Z=POT ( i I j + 1) ; 
POT(i,j)=FUN3(POT(i,j),A,B 1 W,X

1
Y,Z

1
ALPHA); 

elseif(i>lll) 
A=O.S/H; 
W=POT(i-l,j); 
X=POT(i+l,j); 
Y=ll0T(i 1 j-1); 

end 

Z=POT ( i I j + 1) ; 
POT(i,j)=FUNl(POT(i,j) 1 A,W 1 X,Y,Z,ALPH1\); 

·-----·---. - ·----·--··--.. ··---·-·~ 
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% 
% 

****************************************************** 
Calculate the charge 
******************~*********************************** % 

sumOhl=O.O; 
sumlhl=O.O; 
sum2hl=O.O; 
sumlh2=0.0; 
surn2h2=0.0; 
surnOvl=O.O; 
surnlvl=O.O; 
surn2vl=O.O; 
surnlv2=0.0; 
sum2v2=0.0; 
% ****************************************************** 
% Define the actual potential at the plates 
t• 
% ****************************************************** 
for i=lll:ll2 

for j=67:150 
POT(i,j)=POT(i,j}-1.5: 

e:1d 
for j=233:316 

POT(i,j)=POT(i,j)-1.5; 
end 

end 
i=121; 

for j=1:385 
POT(i,j)=POT{i,j)-1.5; 

end 
% ***************************************************** 
% Calculate the electric field at each side of the rectangle 
% 
% ***************************************************** 
i=ll4; 
for j=67:150 

_sum2hl=sum2h1+(POT(i,j}-POT(i+1,j)): 
end 
for j=233:316 

surnlhl=surn1hl+(POT(i,j)-POT(i+l,j)); 
end 
i=109; 
for j=67:150 

sum2h2=sum2h2+(POT(i,j)-POT(i+l,j)): 
end 
for j=233:316 ·. 

surnlh2=surnlh2+(POT(i,j)-POT{i+l,j)): 
end 
i=119; 
for j=1:385 

sumOhl=surnOhl+(POT(i,j)-POT(i+l,j)); 
end 
j=65; 
for i=110:113 

surn2vl=surn2vl+(POT(i,j+l)-POT(i,j)); 
end 
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j=151; 
for i=110: 113 . . . . 

sum2v2=sum2v2+{POT(~,J+l)-POT(~,J)); 

end 
j=231; 
for i=l10:113 

sumlvl=sum1vl+(POT(i,j+l)-POT{i,j}); 
end 
j =317; 
for i=l10:113 

sumlv2=sumlv2+{POT(i,j+l)-POT(i,j)}; 
end 
% 
% 
% 

*************************************************** 
Calculate the total charge 

*************************************************** % 
sum2h=sum2h2+sum2h1; 
sum2v=sum2v2+surn2vl; 
sumlh=sumlhl+sum1h2; 
sumlv=sumlv1+sumlv2; 
Q2=sqrt{sum2h~2+sum2v~2); 

Q1=sqrt(sumlh~2+sumlv~2); 

QO=sumOhl; 
save phi0210 
% ************************************************** 
% Calculate the node value when the north and south legs 
% of the star are equal but differ from the east.and west legs 
%· *****************~******************************** 

function [Q]=FUNl(P,A,W,X,Y,Z,ALPHA}; 

if(P<=l.2) 
if (W>l.2) W=W-1.5; 

elseif (X>1.2) X=X-1.5; 
elseif {Y>l.2) Y=Y-1.5; 
elseif (Z>1.2) Z=Z-1.5; 

end 
G=A"2; 

. Q= (G/.(G+l)) .,.. ( (Y+Z) /2+ (W+X) I (2*G)) *ALPHA+ (1-ALPHA) *P; 
else 

Q=P; 
end 

% ************************************~************* 

% Calculate node value when north and south legs of the 
% star are different 
% ****~********************************************* 
function [Q] =FUN2 (P, A, D, W, X, Y, Z, 1\LPHA); 

if(P<=l.2) 
if {W>1.2) W=W-1.5; 

elseif {X>1.2) X=X-1.5; 
elseif (Y>1.2) Y=Y-1.5; 
elseif (Z>1.2) Z=Z-1.5; 

end 
G=A"2; 
E=B~.2; 



www.manaraa.com

'110

Q= (F/J(F+1) )*((Y+Z) /2+(W/ (F+G) )+(X/ (E+F) ))*ALPHA+ (1-ALPHA) *P;
else

Q=P;
end

+ + + + * + + ******+*************** + ********************

Calculate the node value when all legs of the star_
are equal but the north leg is in dielectric material
*••****•*********•*****+**************************

%

%

%

%
function [Q]=FUN3(P,A,B,W,X,Y,Z,ALPHA)

if(P<=1.2)
ER=3.7;

if (W>1.2) W=W-1.5;
elseif (X>1.2);X=X-1.5
elseif (Y>1.2) Y=Y-1.5
elseif (Z>1.2) Z=Z-1.5

end

G=A~2

£=3^2

F=A*B

T=2*ER/(1+ER);
U=2/(1+ER);
Q=(F/(F+1))*((Y+Z)/2+(T*W/(F+G)) +(U*X/(E+F)))*ALPHA+(1-ALPHA) *P;

else

Q=P;
end
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